Natural Okra Shells Derived Nitrogen-Doped Porous Carbon to Regulate Polysulfides for High-Performance Lithium–Sulfur Batteries
Yanjuan Li
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 P. R. China
Search for more papers by this authorLihuai Liu
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 P. R. China
Search for more papers by this authorRongjia Shi
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 P. R. China
Search for more papers by this authorShun Yang
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 P. R. China
Search for more papers by this authorChengxiao Zhao
College of Science, Nanjing Forestry University, Nanjing, 210037 P. R. China
Search for more papers by this authorYanhui Shi
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 P. R. China
Search for more papers by this authorChangsheng Cao
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 P. R. China
Search for more papers by this authorCorresponding Author
Xiao Yan
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 P. R. China
Search for more papers by this authorYanjuan Li
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 P. R. China
Search for more papers by this authorLihuai Liu
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 P. R. China
Search for more papers by this authorRongjia Shi
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 P. R. China
Search for more papers by this authorShun Yang
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 P. R. China
Search for more papers by this authorChengxiao Zhao
College of Science, Nanjing Forestry University, Nanjing, 210037 P. R. China
Search for more papers by this authorYanhui Shi
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 P. R. China
Search for more papers by this authorChangsheng Cao
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 P. R. China
Search for more papers by this authorCorresponding Author
Xiao Yan
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 P. R. China
Search for more papers by this authorAbstract
Low conductivity of elemental sulfur, the “shuttle effect” of polysulfides, and structural change hamper lithium–sulfur batteries that have poor electrochemical performance. Herein, a facile and scalable approach to fabricate porous carbon is derived from common okra wastes, okra shells, as a matrix for sulfur active materials. Especially, the material calcined under NH3 (N-doped biomass-derived porous carbon [N-OSC]) with a high specific surface area of 2702 m2 g−1 and large pore volume (0.17 cm3 g−1) provides necessary physical adsorption, resulting in the 69.71 wt% loading of sulfur and excellent trapping capacity for polysulfides during the redox process. Furthermore, N element can act as catalytic active sites to facilitate redox conversion from polysulfides to Li2S. Benefiting from the aforementioned advantages, the cell of the N-OSC/S electrode manifests superior electrochemical performance. The initial capacity is found up to be 1387 mA h g−1 at a current density of 0.1 C and 750 mA h g−1 after 200 cycles at 0.5 C rate (where 1 C = 1672 mA h g−1). For durability evaluations, the capacity is maintained at 416 mA h g−1 at 2 C after 1000 cycles with a mere decay of 0.05% per cycle.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1Z. L. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi, W. Lu, K. Kang, Q. Zhang, S. P. Lau, Nat. Commun. 2018, 9, 4164.
- 2Z. P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, Z. Chen, Nat. Energy 2018, 3, 279.
- 3C. Ye, Y. Jiao, H. Jin, A. D. Slattery, K. Davey, H. Wang, S. Z. Qiao, Angew. Chem., Int. Edit. 2018, 57, 16703.
- 4N. S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y. K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, P. G. Bruce, Angew. Chem., Int. Edit. 2012, 51, 9994.
- 5H. Dai, K. Xi, X. Liu, C. Lai, S. Zhang, J. Am. Chem. Soc. 2018, 140, 17515.
- 6H. Nagata, Y. Chikusa, Energy Technol. 2016, 4, 484.
- 7Z. Xing, G. Li, S. Sy, Z. Chen, Nano Energy 2018, 54, 1.
- 8A. Manthiram, Y. Fu, Y. S. Su, Acc. Chem. Res. 2013, 46, 1125.
- 9J. Gao, M. A. Lowe, Y. Kiya, H. D. Abruña, J. Phys. Chem. C 2011, 115, 25132.
- 10L. B. Xing, K. Xi, Q. Li, Z. Su, C. Lai, X. Zhao, R. V. Kumar, J. Power Sources 2016, 303, 22.
- 11X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500.
- 12D.-W. Wang, G. Zhou, F. Li, K. H. Wu, G. Q. Lu, H. M. Cheng, I. R. Gentle, Phys. Chem. Chem. Phys. 2012, 14, 8703.
- 13M. Weinberger, J. Munding, M. Lindén, M. Wohlfahrt-Mehrens, Energy Technol. 2018, 6, 1797.
- 14N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Angew. Chem., Int. Edit. 2011, 50, 5904.
- 15X. B. Cheng, J. Q. Huang, Q. Zhang, H. J. Peng, M. Q. Zhao, F. Wei, Nano Energy 2014, 4, 65.
- 16J. Guo, Y. Xu, C. Wang, Nano Lett. 2011, 11, 4288.
- 17M. Q. Zhao, X. F. Liu, Q. Zhang, G. L. Tian, J. Q. Huang, W. Zhu, F. Wei, ACS Nano 2012, 6, 10759.
- 18R. Fang, S. Zhao, P. Hou, M. Cheng, S. Wang, H. M. Cheng, C. Liu, F. Li, Adv. Mater. 2016, 28, 3374.
- 19X. Guo, K. Li, W. Bao, Y. Zhao, J. Xu, H. Liu, G. Wang, Energy Technol. 2018, 6, 251.
- 20J. Zhang, N. Yang, X. Yang, S. Li, J. Yao, Y. Cai, J. Alloys Compd. 2015, 650, 604.
- 21P. Kalyani, A. Anitha, Int. J. Hydrogen Energy 2013, 38, 4034.
- 22S. H. Chung, A. Manthiram, Adv. Mater. 2014, 26, 1360.
- 23H. Hou, L. Shao, Y. Zhang, G. Zou, J. Chen, X. Ji, Adv. Sci. 2017, 4, 1600243.
- 24J. Wang, P. Nie, B. Ding, S. Dong, X. Hao, H. Dou, X. Zhang, J. Mater. Chem. A 2017, 5, 2411.
- 25J. Zhang, L. Zhang, S. Yang, D. Li, Z. Xie, B. Wang, Y. Xia, F. Quan, J. Alloys Compd. 2017, 701, 256.
- 26Y. Zhong, X. Xia, S. Deng, D. Xie, S. Shen, K. Zhang, W. Guo, X. Wang, J. Tu, Adv. Mater. 2018, 30, 1805165.
- 27Y. Zhong, X. Xia, S. Deng, J. Zhan, R. Fang, Y. Xia, X. Wang, Q. Zhang, J. Tu, Adv. Energy Mater. 2018, 8, 1701110.
- 28M. Li, P. Hu, X. Wang, Z. Niu, Q. Zhou, Q. Wang, M. Zhu, C. Guo, L. Zhang, J. Lu, J. Li, Energy Technol. 2019, 7, 1800898.
- 29Z. Li, J. Zhang, X. W. Lou, Angew. Chem., Int. Edit. 2015, 127, 13078.
10.1002/ange.201506972 Google Scholar
- 30L. Li, G. Zhou, L. Yin, N. Koratkar, F. Li, H. M. Cheng, Carbon 2016, 108, 120.
- 31Q. Pang, J. Tang, H. Huang, X. Liang, C. Hart, K. C. Tam, L. F. Nazar, Adv. Mater. 2015, 27, 6021.
- 32X. Liu, J. Q. Huang, Q. Zhang, L. Mai, Adv. Mater. 2017, 29, 1601759.
- 33J. W. Kim, H. Jeon, J. Lee, J. Phys. Chem. C 2018, 122, 23045.
- 34G. Dong, W. Ho, Y. Li, L. Zhang, Appl. Catal. B: Environ. 2015, 174–175, 477.
- 35B. Li, Z. Yuan, Y. Xu, J. Liu, Appl. Catal. A: Gen. 2016, 523, 241.
- 36W. Zhang, Z. Chen, X. Guo, K. Jin, Y. Wang, L. Li, Y. Zhang, Z. Wang, L. Sun, T. Zhang, Electrochim. Acta 2018, 278, 51.
- 37L. Zhao, R. He, K. T. Rim, T. Schiros, K. S. Kim, H. Zhou, C. Gutiérrez, S. P. Chockalingam, C. J. Arguello, L. Pálová, D. Nordlund, M. S. Hybertsen, D. R. Reichman, T. F. Heinz, P. Kim, A. Pinczuk, G. W. Flynn, A. N. Pasupathy, Science 2011, 333, 999.
- 38J. Song, T. Xu, M. L. Gordin, P. Zhu, D. Lv, Y. B. Jiang, Y. Chen, Y. Duan, D. Wang, Adv. Funct. Mater. 2014, 24, 1243.
- 39R. Karunagaran, T. T. Tung, C. Shearer, D. Tran, C. Coghlan, C. Doonan, D. Losic, Mater. 2017, 10, 921.
- 40X. Yan, Y. Li, M. Li, Y. Jin, F. Du, G. Chen, Y. Wei, J. Mater. Chem. A 2015, 3, 4180.
- 41H. Zhang, W. Zhao, M. Zou, Y. Wang, Y. Chen, L. Xu, H. Wu, A. Cao, Adv. Energy Mater. 2018, 8, 1800013.
- 42X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500.
- 43T. Gao, Z. Yu, Z.-H. Huang, Y. Yang, Acs Appl. Energy Mater. 2019, 2, 777.
- 44Y. Xia, R. Fang, Z. Xiao, H. Huang, Y. Gan, R. Yan, X. Lu, C. Liang, J. Zhang, X. Tao, W. Zhang, Acs Appl. Mater. Interfaces 2017, 9, 23782.
- 45X. Tao, J. Wang, C. Liu, H. Wang, H. Yao, G. Zheng, Z. W. Seh, Q. Cai, W. Li, G. Zhou, C. Zu, Y. Cui, Nat. Commun. 2016, 7, 11203.
- 46C. Jin, W. Zhang, Z. Zhuang, J. Wang, H. Huang, Y. Gan, Y. Xia, C. Liang, J. Zhang, X. Tao, J. Mater. Chem. A 2017, 5, 632.
- 47J. Zhang, J. Xiang, Z. Dong, Y. Liu, Y. Wu, C. Xu, G. Du, Electrochim. Acta 2014, 116, 146.
- 48J. Liu, B. Liu, C. Wang, Z. Huang, L. Hu, X. Ke, L. Liu, Z. Shi, Z. Guo, J. Alloys Compd. 2017, 718, 373.
- 49M. Xiang, Y. Wang, J. Wu, Y. Guo, H. Wu, Y. Zhang, H. Liu, Electrochim. Acta 2017, 227, 7.
- 50F. Chen, J. Yang, T. Bai, B. Long, X. Zhou, Electrochim. Acta 2016, 192, 99.
- 51S. Ji, S. Imtiaz, D. Sun, Y. Xin, Q. Li, T. Huang, Z. Zhang, Y. Huang, Chem. Eur. J. 2017, 23, 18208.
- 52Y. Yan, M. Shi, Y. Wei, C. Zhao, M. Carnie, R. Yang, Y. Xu, J. Alloys Compd. 2018, 738, 16.
- 53H. Wu, Y. Deng, J. Mou, Q. Zheng, F. Xie, E. Long, C. Xu, D. Lin, Electrochim. Acta 2017, 242, 146.
- 54B. Zheng, L. Yu, Y. Zhao, J. Xi, Electrochim. Acta 2019, 295, 910.