A novel impedance modeling and stability analysis paradigm of microgrids consisting of virtual synchronous generators and constant power loads
Jiwei Ge
School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
Search for more papers by this authorCorresponding Author
Yang Han
School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
Correspondence
Yang Han, School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
Email: [email protected]
Search for more papers by this authorPing Yang
School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
Search for more papers by this authorAmr S. Zalhaf
School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
Electrical Power and Machines Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt
Search for more papers by this authorJiwei Ge
School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
Search for more papers by this authorCorresponding Author
Yang Han
School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
Correspondence
Yang Han, School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
Email: [email protected]
Search for more papers by this authorPing Yang
School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
Search for more papers by this authorAmr S. Zalhaf
School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
Electrical Power and Machines Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt
Search for more papers by this authorAbstract
The application of virtual synchronous generators (VSGs) in power systems is gradually increasing to address the low inertia issue caused by the high penetration of renewable energy sources. Besides, the stability of microgrids (MGs) is threatened by constant power loads (CPLs) consisting of power electronic converters with closed-loop controllers. To investigate the stability of the MG composed of VSG and CPL, this paper analyzes the operational principles of VSG and CPL, revealing that only the bipolar switch logic function is suitable for establishing a closed-loop model if the output of the inner-loop controller is considered as the duty cycle of the PWM signal. Furthermore, the closed-loop impedance models of VSG and CPL were established in the dq frame. Impedance-based analysis results show that the MG is prone to oscillation in the mid-band. Therefore, the active power loop parameters of the VSG have a small impact on the stability of the MG, while the LC filter and inner loop controllers have a greater impact on the stability. Based on the oscillation mechanism and passivity theory, the impedance reshaping strategy for VSG and CPL is proposed. It is verified that the proposed control strategy can significantly improve the stability of the MG through the comparison of simulation results and theoretical analysis.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1Zhao E, Han Y, Liu Y, Yang P, Wang C, Zalhaf AS. Passivity enhancement control strategy and optimized parameter design of islanded microgrids. Sustain Energy Grids Netw. 2023; 33:100971. doi:10.1016/j.segan.2022.100971
- 2Hetita I, Mansour D-EA, Han Y, Yang P, Zalhaf AS. Experimental and numerical analysis of transient overvoltages of PV systems when struck by lightning. IEEE Trans Instrum Meas. 2022; 71: 1-11. doi:10.1109/TIM.2022.3199225
- 3Elboshy B, Alwetaishi M, Aly RMH, Zalhaf AS. A suitability mapping for the PV solar farms in Egypt based on GIS-AHP to optimize multi-criteria feasibility. Ain Shams Eng J. 2022; 13(3):101618. doi:10.1016/j.asej.2021.10.013
- 4Zalhaf AS, Abdel-Salam M, Ahmed M. An active common-mode voltage canceler for PWM converters in wind-turbine doubly-fed induction generators. Energies (Basel). 2019; 12(4): 691. doi:10.3390/en12040691
- 5Yin L, Su Z. Multi-step depth model predictive control for photovoltaic power systems based on maximum power point tracking techniques. International Journal of Electrical Power and Energy Systems. 2021; 131:107075. doi:10.1016/j.ijepes.2021.107075
- 6Nian H, Jiao Y. Improved virtual synchronous generator control of DFIG to ride-through symmetrical voltage fault. IEEE Transactions on Energy Conversion. 2020; 35(2): 672-683. doi:10.1109/TEC.2019.2954596
- 7Hetita I, Zalhaf AS, Mansour D-EA, Han Y, Yang P, Wang C. Modeling and protection of photovoltaic systems during lightning strikes: a review. Renew Energy. 2022; 184: 134-148. doi:10.1016/j.renene.2021.11.083
- 8Zalhaf AS, Mansour D-EA, Han Y, Yang P, Darwish MMF. Numerical and experimental analysis of the transient behavior of wind turbines when two blades are simultaneously struck by lightning. IEEE Trans Instrum Meas. 2022; 71: 1-12. doi:10.1109/TIM.2021.3132076
- 9Pourmohammad M, Toulabi M, Ranjbar AM. Application of state feedback controller to ensure robust D-stable operation of virtual synchronous generators. IEEE Transactions on Energy Conversion. 2021; 36(2): 602-610. doi:10.1109/TEC.2020.3018586
- 10Wang Z, Meng F, Zhang Y, Wang W, Li G, Ge J. Cooperative adaptive control of multi-parameter based on dual-parallel virtual synchronous generators system. IEEE Transactions on Energy Conversion. 2023; 38(4): 1-14. doi:10.1109/TEC.2023.3283048
- 11Li C, Yang Y, Cao Y, Aleshina A, Xu J, Blaabjerg F. Grid inertia and damping support enabled by proposed virtual inductance control for grid-forming virtual synchronous generator. IEEE Trans Power Electron. 2023; 38(1): 294-303. doi:10.1109/TPEL.2022.3203049
- 12Cheema KM. A comprehensive review of virtual synchronous generator. Int J Electr Power Energy Syst. 2020; 120:106006. doi:10.1016/j.ijepes.2020.106006
- 13Zhong Q-C, Weiss G. Synchronverters: inverters that mimic synchronous generators. IEEE Trans Ind Electron. 2011; 58(4): 1259-1267. doi:10.1109/TIE.2010.2048839
- 14Liu J, Miura Y, Ise T. Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators. In: IEEE Transactions on Power Electronics. Institute of Electrical and Electronics Engineers Inc.; 2016: 3600-3611. doi:10.1109/TPEL.2015.2465852
10.1109/TPEL.2015.2465852 Google Scholar
- 15Chen S, Sun Y, Han H, Shi G, Guan Y, Guerrero JM. Dynamic frequency performance analysis and improvement for parallel VSG systems considering virtual inertia and damping coefficient. IEEE J Emerg Sel Top Power Electron. 2023; 11(1): 478-489. doi:10.1109/JESTPE.2022.3208249
- 16Meng X, Liu J, Liu Z. A generalized droop control for grid-supporting inverter based on comparison between traditional droop control and virtual synchronous generator control. IEEE Trans Power Electron. 2019; 34(6): 5416-5438. doi:10.1109/TPEL.2018.2868722
- 17Wu H, Ruan X, Yang D, et al. Small-signal modeling and parameters design for virtual synchronous generators. IEEE Trans Ind Electron. 2016; 63(7): 4292-4303. doi:10.1109/TIE.2016.2543181
- 18Li Z, Shahidehpour M. Small-signal modeling and stability analysis of hybrid AC/DC microgrids. IEEE Trans Smart Grid. 2019; 10(2): 2080-2095. doi:10.1109/TSG.2017.2788042
- 19Wen B, Dong D, Boroyevich D, Burgos R, Mattavelli P, Shen Z. Impedance-based analysis of grid-synchronization stability for three-phase paralleled converters. IEEE Trans Power Electron. 2016; 31(1): 26-38. doi:10.1109/TPEL.2015.2419712
- 20Wen B, Boroyevich D, Burgos R, Mattavelli P, Shen Z. Small-signal stability analysis of three-phase AC systems in the presence of constant power loads based on measured d-q frame impedances. IEEE Trans Power Electron. 2015; 30(10): 5952-5963. doi:10.1109/TPEL.2014.2378731
- 21Liao Y, Liu Z, Zhang H, Wen B. Low-frequency stability analysis of single-phase system with dq-frame impedance approach—part I: impedance modeling and verification. IEEE Trans Ind Appl. 2018; 54(5): 4999-5011. doi:10.1109/TIA.2018.2832027
- 22Wen B, Burgos R, Boroyevich D, Mattavelli P, Shen Z. AC stability analysis and dq frame impedance specifications in power-electronics-based distributed power systems. IEEE J Emerg Sel Top Power Electron. 2017; 5(4): 1455-1465. doi:10.1109/JESTPE.2017.2728640
- 23Liu H, Sun D, Song P, Cheng X, Zhao F, Tian Y. Influence of virtual synchronous generators on low frequency oscillations. CSEE J Power Energy Syst. 2022; 8(4): 1029-1038. doi:10.17775/CSEEJPES.2020.01700
- 24Zhao E, Han Y, Lin X, Yang P, Blaabjerg F, Zalhaf AS. Impedance characteristics investigation and oscillation stability analysis for two-stage PV inverter under weak grid condition. Electr Pow Syst Res. 2022; 209:108053. doi:10.1016/j.epsr.2022.108053
- 25Xu Y, Nian H, Hu B, Sun D. Impedance modeling and stability analysis of VSG controlled type-IV wind turbine system. IEEE Transactions on Energy Conversion. 2021; 36(4): 3438-3448. doi:10.1109/TEC.2021.3062232
- 26Wu W, Zhou L, Chen Y, et al. Sequence-impedance-based stability comparison between VSGs and traditional grid-connected inverters. IEEE Trans Power Electron. 2019; 34(1): 46-52. doi:10.1109/TPEL.2018.2841371
- 27Wang H, Xie Z, Chen Y, et al. Admittance-based stability analysis of current-controlled VSG considering the frequency coupling characteristics. IEEE J Emerg Sel Top Power Electron. 2023; 11(1): 1191-1202. doi:10.1109/JESTPE.2022.3213258
- 28Wu W, Zhang M, Chen Y, et al. Sequence impedance modeling and stability comparative analysis of voltage-controlled VSGs and current-controlled VSGs. IEEE Trans Ind Electron. 2019; 66(8): 6460-6472. doi:10.1109/TIE.2018.2873523
- 29Guo J, Chen Y, Wang L, et al. Impedance analysis and stabilization of virtual synchronous generators with different DC-link voltage controllers under weak grid. IEEE Trans Power Electron. 2021; 36(10): 11397-11408. doi:10.1109/TPEL.2021.3070038
- 30Guo J, Chen Y, Liao S, et al. Analysis and mitigation of low-frequency interactions between the source and load virtual synchronous machine in an islanded microgrid. IEEE Trans Ind Electron. 2022; 69(4): 3732-3742. doi:10.1109/TIE.2021.3075847
- 31Wen B, Boroyevich D, Mattavelli P, Shen Z, Burgos R. Influence of phase-locked loop on input admittance of three-phase voltage-source converters. in Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2013, pp. 897–904. doi:10.1109/APEC.2013.6520317.
- 32Guo J, Chen Y, Wu W, et al. Wideband dq-frame impedance modeling of load-side virtual synchronous machine and its stability analysis in comparison with conventional PWM rectifier in weak grid. IEEE J Emerg Sel Top Power Electron. 2021; 9(2): 2440-2451. doi:10.1109/JESTPE.2020.2989748
- 33Verdugo C, Tarraso A, Candela JI, Rocabert J, Rodriguez P. Centralized synchronous controller based on load angle regulation for photovoltaic power plants. IEEE J Emerg Sel Top Power Electron. 2021; 9(1): 485-496. doi:10.1109/JESTPE.2020.2995339
- 34Zhao Y, Liu L, Wang L. Virtual synchronous grid interface of distributed wind turbines without PLL. in 2021 IEEE Sustainable Power and Energy Conference (iSPEC), 2021, pp. 2663–2667. doi:10.1109/iSPEC53008.2021.9735759.
- 35Bera A, Abdelmalak M, Alzahrani S, Benidris M, Mitra J. Sizing of energy storage systems for grid inertial response. in 2020 IEEE Power & Energy Society General Meeting (PESGM), 2020, pp. 1–5. doi:10.1109/PESGM41954.2020.9281937.
- 36Nauman M, Hasan A. Efficient implicit model-predictive control of a three-phase inverter with an output LC filter. IEEE Trans Power Electron. 2016; 31(9): 6075-6078. doi:10.1109/TPEL.2016.2535263
- 37Liu Z, Liu J, Bao W, Zhao Y. Infinity-norm of impedance-based stability criterion for three-phase AC distributed power systems with constant power loads. IEEE Trans Power Electron. 2015; 30(6): 3030-3043. doi:10.1109/TPEL.2014.2331419
- 38Mao H, Boroyevich D, Lee FCY. Novel reduced-order small-signal model of a three-phase PWM rectifier and its application in control design and system analysis. IEEE Trans Power Electron. 1998; 13(3): 511-521. doi:10.1109/63.668114
- 39Hatziargyriou N, Milanovic J, Rahmann C, et al. Definition and classification of power system stability – revisited & extended. IEEE Trans Power Syst. 2021; 36(4): 3271-3281. doi:10.1109/TPWRS.2020.3041774