A single-phase AC-AC converter with continuous input current and without commutation problem
Babak Fathipour
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
Search for more papers by this authorRamin Kheyri
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
Search for more papers by this authorSeyyed Mohammad Javad Mousavi
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
Search for more papers by this authorCorresponding Author
Ebrahim Babaei
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10 Turkey
Correspondence
Ebrahim Babaei, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
Emails:
Email: [email protected]
Search for more papers by this authorBabak Fathipour
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
Search for more papers by this authorRamin Kheyri
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
Search for more papers by this authorSeyyed Mohammad Javad Mousavi
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
Search for more papers by this authorCorresponding Author
Ebrahim Babaei
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10 Turkey
Correspondence
Ebrahim Babaei, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
Emails:
Email: [email protected]
Search for more papers by this authorAbstract
In this paper, a single-phase AC-AC converter with continuous input current and without commutation problem is proposed. The output voltage regulation achieved using a single high-frequency switch eliminates the need for complementary switches, thereby resolving high-frequency commutation issues and obviating the necessity for snubber circuits and a safe commutation strategy. The proposed converter operates with a continuous input current, eliminating the need for a bulky LC filter. Low-frequency switches on the output side allow for step-changed frequency operation without encountering commutation problems. A straightforward and adaptable switching strategy generates the step-changed frequency at the output. The proposed converter reduces volume, weight, and cost by minimizing the total stored energy of passive components. High-speed switching is achieved by preventing the body diode conduction of power MOSFETs, which traditionally suffer from poor reverse recovery. The operational principles of the proposed converter are delineated for various modes, and their key relationships are presented. A 110Vi(rms)/50 Hz laboratory prototype validates the performance of the proposed converter.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
REFERENCES
- 1Abdoli I, Mosallanejad A. A single-phase q-source ac-ac converter with continuous input current, safe commutation feature, and reduced bidirectional switch counts. Int J Circ Theor Appl. 2022; 50(8): 2829-2846. doi:10.1002/cta.3298
- 2Mousavi SMJ, Babaei E, Alizadeh D. Non-isolated single-phase trans-Z-source converter for dynamic voltage restorer application. In: 2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC). IEEE; 2022: 368-373.
10.1109/PEDSTC53976.2022.9767497 Google Scholar
- 3Ahmed HF, Moursi MSE, Zahawi B, Hosani KA, Khan AA. Single-phase symmetric-bipolar-type high-frequency isolated buck-boost ac-ac converter with continuous input and output currents. IEEE Trans Power Electron. 2021; 36(10): 11579-11592. doi:10.1109/TPEL.2021.3073236
- 4Young CM, Chen MH, Yeh SH, Yuo KH. A single-phase single-stage high step-up AC–DC matrix converter based on Cockcroft–Walton voltage multiplier with PFC. IEEE Trans Power Electron. 2012; 27(12): 4894-4905. doi:10.1109/TPEL.2012.2192450
- 5Drabek P, Peroutka Z, Pittermann M, Cedl M. New configuration of traction converter with medium-frequency transformer using matrix converters. IEEE Trans Ind Electron. 2011; 58(11): 5041-5048. doi:10.1109/TIE.2011.2138114
- 6Barrera-Cardenas R, Molinas M. Comparative study of wind turbine power converters based on medium-frequency ac-link for offshore dc-grids. IEEE JESTPE. 2015; 3(2): 525-541.
- 7Nguyen-Quang N, Stone DA, Bingham CM, Foster MP. A three-phase to single-phase matrix converter for high-frequency induction heating. In: 13th European Conference on Power Electronics and Applications. IEEE; 2009: 1-10.
- 8De Paula Dias Queiroz A, Jacobina CB, De Freitas NB, Maia ACN, Melo VFMB. Single-phase ac-dc-ac multilevel converter based on H-bridges and three-leg converters connected in series. IEEE Trans Ind Appl. 2018; 54(5): 4696-4706. doi:10.1109/TIA.2018.2839080
- 9Freitas IS, Jacobina CB, dos Santos EC. Single-phase to single-phase full-bridge converter operating with reduced ac power in the dc link capacitor. IEEE Trans Power Electron. 2010; 25(2): 272-279. doi:10.1109/TPEL.2009.2031225
- 10Qin L, Loh PC, Blaabjerg F. Modulation schemes with enhanced switch thermal distribution for single-phase ac-dc-ac reduced-switch converters. IEEE Trans Power Electron. 2016; 31(4): 3302-3313. doi:10.1109/TPEL.2015.2451733
- 11Wang C, Yang H, Hua H, Xue Y. Operation of dual-T-type modular multilevel converter for uninterrupted power supply under bridge failures. IEEE Trans Ind Electron. 2023; 70(12): 11876-11886. doi:10.1109/TIE.2023.3239941
- 12Pipolo S, Formentini A, Trentin A, Zanchetta P, Calvini M, Venturini M. A novel matrix converter modulation with reduced number of commutations. IEEE Trans. Ind. Appl. 2021; 57(5): 4991-5000. doi:10.1109/TIA.2021.3087121
- 13Babaei E, Hosseini SH, Gharehpetian GB. Reduction of THD and low order harmonics with symmetrical output current for single-phase ac/ac matrix converters. Elect Power Energy Syst. 2010; 32(3): 225-235. doi:10.1016/j.ijepes.2009.07.004
- 14Zuckerberger A, Weinstock D, Alexandrovitz A. Single-phase matrix converter. IEE Proc-Electr Power Appl. 1997; 144(4): 235-1997.
- 15Fang XP, Qian ZM, Peng FZ. Single-phase Z-source PWM ac-ac converters. IEEE Power Electron Letters. 2005; 3(4): 121-124. doi:10.1109/LPEL.2005.860453
10.1109/LPEL.2005.860453 Google Scholar
- 16Mousavi SMJ, Babaei E, Alizadeh D, Bahador A. A bidirectional single-phase Z-source ac-ac converter with reduced voltage stress on switches and safe commutation strategy. Int J Circ Theor Appl. 2023; 51(11): 1-18. doi:10.1002/cta.3675
- 17Mousavi SMJ, Zargariafshar D, Babaei E, Ahmed HF. A single-phase Z-source ac-ac converter with continuous input current and without commutation issue. IEEE Trans Ind Electron. 2024, in press; 1-9. doi:10.1109/TIE.2024.3357889
- 18Peng FZ, Chen L, Zhang F. Simple topologies of PWM ac-ac converters. IEEE Power Electron Lett. 2003; 1(1): 10-13. doi:10.1109/LPEL.2003.814961
10.1109/LPEL.2003.814961 Google Scholar
- 19Sarnago H, Lucia O, Mediano A, Burdioo JM. Direct ac-ac resonant boost converter for efficient domestic induction heating applications. IEEE Trans Power Electron. 2014; 29(3): 1128-1139. doi:10.1109/TPEL.2013.2262154
- 20Jahani F, Monfared M. A multilevel ac/ac converter with reduced number of switches. IEEE Trans Ind Electron. 2018; 65(2): 1244-1253. doi:10.1109/TIE.2017.2733495
- 21Luo F, Ye H. DC-modulated power factor correction ac/ac converters. In: 2007 2nd IEEE Conference on Industrial Electronics and Applications. IEEE; 2007: 1477-1483.
10.1109/ICIEA.2007.4318652 Google Scholar
- 22Ahmed HF, Cha H, Khan AA, Kim H. A novel buck–boost ac-ac converter with both inverting and noninverting operations and without commutation problem. IEEE Trans Power Electron. 2016; 31(6): 4241-4251. doi:10.1109/TPEL.2015.2468585
- 23Khan AA, Chan H, Ahmed HF. An improved single-phase direct PWM inverting buck-boost ac-ac converter. IEEE Trans Ind Electron. 2016; 63(9): 5384-5393. doi:10.1109/TIE.2016.2565461
- 24Sharifi S, Jahani F, Monfared M. Direct single-phase ac-ac converters based on series impedance networks. IEEE Trans Power Electron. 2018; 33(12): 10380-10389. doi:10.1109/TPEL.2018.2807128
- 25Abdoli I, Mosallanejad A. An isolated high-gain impedance source-based single-phase ac-ac converter with safe commutation and variable output frequency. Int J Circ Theor Appl. 2023; 51(9): 4294-4316. doi:10.1002/cta.3651
- 26Fathi S, Mousavi SMJ, Babaei E. A high-frequency isolated four-switch single-phase quasi-Z-source ac-ac converter with inherent commutation and step-changed frequency operation. IEEE Trans Power Electron. 2023; 38(4): 4937-4944. doi:10.1109/TPEL.2022.3228939
- 27Nguyen M, Jung Y, Lim Y, Kim Y. A single-phase Z-source buck–boost matrix converter. IEEE Trans Power Electron. 2010; 25(2): 453-462. doi:10.1109/TPEL.2009.2028890
- 28Ahmed HF, Cha H, Khan AA, Kim J, Cho J. A single-phase buck-boost matrix converter with only six switches and without commutation problem. IEEE Trans Power Electron. 2017; 32(2): 1232-1244. doi:10.1109/TPEL.2016.2553044
- 29Sharifi S, Monfared M, Babaei M, Pourfaraj A. Highly efficient single-phase buck-boost variable-frequency ac-ac converter with inherent commutation capability. IEEE Trans Ind Electron. 2020; 67(5): 3640-3649. doi:10.1109/TIE.2019.2914644
- 30Rahman K, Meraj M, Bhaskar MS, Iqbal A. Single-phase ZAC-source ac-ac converter with high buck and boost voltage conversion capability. IEEE Trans Ind Electron. 2020; 67(11): 9251-9259. doi:10.1109/TIE.2019.2956386
- 31He L, Xu X. Novel high-efficiency frequency-variable buck–boost ac-ac converter with safe-commutation and continuous current. IEEE Trans Power Electron. 2020; 35(12): 13225-13238. doi:10.1109/TPEL.2020.2996202
- 32Ahmed HF, El Moursi MS, Zahawi B, Hosani KA. High-efficiency single-phase matrix converter with diverse symmetric bipolar buck and boost operations. IEEE Trans Power Electron. 2021; 36(4): 4300-4315. doi:10.1109/TPEL.2020.3024785
- 33Ahmed HF, Alzaabi O, El Moursi MS, Al Hosani K. Highly-efficient dual-buck structured buck-boost ac-ac converter with versatile identical inverting/non-inverting operations. IEEE Trans Industr Inform. 2023; 19(12): 11403-11417. doi:10.1109/TII.2023.3246531
- 34Zargariafshar D, Mousavi SMJ, Babaei E. A five-switch single-phase buck-boost ac-ac converter with inherent commutation and continuous input current. IEEE Trans Power Electron. 2023, in press; 1-9. doi:10.1109/TPEL.2023.3334169
- 35Lei Y, Liu YC, Pilawa-Podgurski RCN. An analytical method to evaluate and design hybrid switched-capacitor and multilevel converters. IEEE Trans Power Electron. 2018; 33(3): 2227-2240. doi:10.1109/TPEL.2017.2690324