Volatile Additive Assists Binary Layer-by-Layer Solution Processing Organic Solar Cells to Achieve 19% Efficiency
Luye Cao
Yangtze Delta Region Institute (Huzhou) & School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001 China
Search for more papers by this authorHengyuan Zhang
Yangtze Delta Region Institute (Huzhou) & School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001 China
Search for more papers by this authorCorresponding Author
Xiaoyang Du
Yangtze Delta Region Institute (Huzhou) & School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001 China
E-mail: [email protected], [email protected]Search for more papers by this authorXinrui Li
School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, Xichuan, 610039 China
Search for more papers by this authorHui Lin
Yangtze Delta Region Institute (Huzhou) & School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001 China
Search for more papers by this authorGang Yang
Yangtze Delta Region Institute (Huzhou) & School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001 China
Search for more papers by this authorCaijun Zheng
Yangtze Delta Region Institute (Huzhou) & School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001 China
Search for more papers by this authorCorresponding Author
Silu Tao
Yangtze Delta Region Institute (Huzhou) & School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001 China
E-mail: [email protected], [email protected]Search for more papers by this authorLuye Cao
Yangtze Delta Region Institute (Huzhou) & School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001 China
Search for more papers by this authorHengyuan Zhang
Yangtze Delta Region Institute (Huzhou) & School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001 China
Search for more papers by this authorCorresponding Author
Xiaoyang Du
Yangtze Delta Region Institute (Huzhou) & School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001 China
E-mail: [email protected], [email protected]Search for more papers by this authorXinrui Li
School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, Xichuan, 610039 China
Search for more papers by this authorHui Lin
Yangtze Delta Region Institute (Huzhou) & School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001 China
Search for more papers by this authorGang Yang
Yangtze Delta Region Institute (Huzhou) & School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001 China
Search for more papers by this authorCaijun Zheng
Yangtze Delta Region Institute (Huzhou) & School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001 China
Search for more papers by this authorCorresponding Author
Silu Tao
Yangtze Delta Region Institute (Huzhou) & School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001 China
E-mail: [email protected], [email protected]Search for more papers by this authorComprehensive Summary
Layer-by-layer (LbL) solution processing is an efficient method to realize high performance organic solar cells (OSCs). One of the drawbacks of the LbL-processed active layer is the large difference in the crystallinity of the donor and acceptor, which will lead to imbalance charge transfer and result in unfavorable charge recombination. Herein, we combined a novel volatile additive 3,5-dichloro-2,4,6- trifluorobenzotrifluoride (DTBF) with the LbL method to realize high-efficiency OSCs. DTBF interacts with the non-fullerene acceptor BTP-4F by non-covalent bonding, which enhances the crystallinity and compact stacking of BTP-4F. DTBF doped OSC has balanced and efficient electron transport properties, longer carrier lifetime, higher exciton dissociation and charge collection efficiencies, lower energetic disorder than the control OSC without any additives. Benefiting from the optimization of charge dynamics and micro-morphology by DTBF, the binary LbL-processed OSC achieved synergistic improvements in open-circuit voltage, short-circuit current density and fill factor. As a result, a champion power conversion efficiency (PCE) of 19% is realized for DTBF-optimized OSC, which is superior to the control OSC (17.55%). This work demonstrates a promising approach to modulate active layer morphology and fabricate high performance OSCs.
Supporting Information
Filename | Description |
---|---|
cjoc202400850-sup-0001-supinfo.pdfPDF document, 837.6 KB |
Appendix S1: Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; Zhou, Z.; Zeng, R.; Zhu, H.; Chen, C.; MacKenzie, R.; Zou, Y.; Nelson, J.; Zhang, Y.; Sun, Y.; Liu, F. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663.
- 2 Fu, J.; Fong, P.; Liu, H.; Huang, C.; Lu, X.; Lu, S.; Abdelsamie, M.; Kodalle, T.; Sutter-Fella, C.; Yang, Y.; Li, G. 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 2023, 14, 1760.
- 3 Günther, M.; Kazerouni, N.; Blätte, D.; Perea, J.; Thompson, B.; Ameri, T. Models and mechanisms of ternary organic solar cells. Nat. Rev. Mater. 2023, 8, 456–471.
- 4 Chen, Z.; Ge, J.; Song, W.; Tong, X.; Liu, H.; Yu, X.; Li, J.; Shi, J.; Xie, L.; Han, C.; Liu, Q.; Ge, Z. 20.2% Efficiency Organic Photovoltaics Employing a π-Extension Quinoxaline-Based Acceptor with Ordered Arrangement. Adv. Mater. 2024, 36, 2406690.
- 5 Jiang, Y.; Sun, S.; Xu, R.; Liu, F.; Miao, X.; Ran, G.; Liu, K.; Yi, Y.; Zhang, W.; Zhu, X. Non-fullerene acceptor with asymmetric structure and phenyl-substituted alkyl side chain for 20.2% efficiency organic solar cells. Nat. Energy 2024, 9, 975–986.
- 6 Ding, G.; Chen, T.; Wang, M.; Xia, X.; He, C.; Zheng, X.; Li, Y.; Zhou, D.; Lu, X.; Zuo, L.; Xu, Z.; Chen, H. Solid Additive-Assisted Layer-by-Layer Processing for 19% Efficiency Binary Organic Solar Cells. Nano-Micro Lett. 2023, 15, 92.
- 7 Qiu, D.; Tian, C.; Zhang, H.; Zhang, J.; Wei, Z.; Lu, K. Correlating Aggregation Ability of Polymer Donors with Film Formation Kinetics for Organic Solar Cells with Improved Efficiency and Processability. Adv. Mater. 2024, 36, 2313251.
- 8 Bai, H.; Fan, Q.; Ma, R.; Guo, X.; Ma, W.; Zhang, M. Non-Fully Conjugated Photovoltaic Materials with Y-Series Acceptor Backbone for High-Performance Organic Solar Cells. Chin. J. Chem. 2024, 42, 1307–1318.
- 9 Chen, Z.; Zhang, S.; Ren, J.; Zhang, T.; Dai, J.; Wang, J.; Ma, L.; Qiao, J.; Hao, X.; Hou, J. Molecular Design for Vertical Phase Distribution Modulation in High-Performance Organic Solar Cells. Adv. Mater. 2024, 36, 2310390.
- 10
Jiang, Y.; Liu, F.; Zhu, X. Single-junction organic solar cells with a power conversion efficiency of more than 20%. Nat. Energy 2024, 9, 930–931.
10.1038/s41560-024-01558-y Google Scholar
- 11 Wang, J.; Wang, Y.; Bi, P.; Chen, Z.; Qiao, J.; Li, J.; Wang, W.; Zheng, Z.; Zhang, S.; Hao, X.; Hou, J. Binary Organic Solar Cells with 19.2% Efficiency Enabled by Solid Additive. Adv. Mater. 2023, 35, 2301583.
- 12 Chen, T.; Li, S.; Li, Y.; Chen, Z.; Wu, H.; Lin, Y.; Gao, Y.; Wang, M.; Ding, G.; Min, J.; Ma, Z.; Zhu, H.; Zuo, L.; Chen, H. Compromising Charge Generation and Recombination of Organic Photovoltaics with Mixed Diluent Strategy for Certified 19.4% Efficiency. Adv. Mater. 2023, 35, 2300400.
- 13 Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.; Lau, T.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151.
- 14 Wang, Z.; Gao, K.; Kan, Y.; Zhang, M.; Qiu, C.; Zhu, L.; Zhao, Z.; Peng, X.; Feng, W.; Qian, Z.; Gu, X.; Jen, A.; Tang, B.; Cao, Y.; Zhang, Y.; Liu, F. The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances. Nat. Commun. 2021, 12, 332.
- 15 Weng, K.; Ye, L.; Zhu, L.; Xu, J.; Zhou, J.; Feng, X.; Lu, G.; Tan, S.; Liu, F.; Sun, Y. Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nat. Commun. 2020, 11, 2855.
- 16 Hong, L.; Yao, H.; Cui, Y.; Bi, P.; Zhang, T.; Cheng, Y.; Zu, Y.; Qin, J.; Yu, R.; Ge, Z.; Hou, J. 18.5% Efficiency Organic Solar Cells with a Hybrid Planar/Bulk Heterojunction. Adv. Mater. 2021, 33, 2103091.
- 17 Jiang, K.; Zhang, J.; Peng, Z.; Lin, F.; Wu, S.; Li, Z.; Chen, Y.; Yan, H.; Ade, H.; Zhu, Z.; Jen, A. Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length. Nat. Commun. 2021, 12, 468.
- 18 Kim, D.; Mei, J.; Ayzner, A.; Schmidt, K.; Giri, G.; Appleton, A.; Toney, M.; Bao, Z. Sequentially solution-processed, nanostructured polymer photovoltaics using selective solvents. Energy Environ. Sci. 2014, 7, 1103–1109.
- 19 Liu, C.; Fu, Y.; Zhou, J.; Wang, L.; Guo, C.; Cheng, J.; Sun, W.; Chen, C.; Zhou, J.; Liu, D.; Li, W.; Wang, T. Alkoxythiophene-Directed Fibrillization of Polymer Donor for Efficient Organic Solar Cells. Adv. Mater. 2024, 36, 2308608.
- 20 Xu, X.; Jing, W.; Meng, H.; Guo, Y.; Yu, L.; Li, R.; Peng, Q. Sequential Deposition of Multicomponent Bulk Heterojunctions Increases Efficiency of Organic Solar Cells. Adv. Mater. 2023, 35, 2208997.
- 21 Han, C.; Wang, J.; Zhang, S.; Chen, L.; Bi, F.; Wang, J.; Yang, C.; Wang, P.; Li, Y.; Bao, X. Over 19% Efficiency Organic Solar Cells by Regulating Multidimensional Intermolecular Interactions. Adv. Mater. 2023, 35, 2208986.
- 22 Xie, J.; Deng, J.; Pei, Y.; Jeong, S.; Huang, B.; Zhou, D.; Woo, H.; Xu, J.; Wu, F.; Chen, L. Synergistic Regulation of Crystallization Kinetics of Donor/Acceptor by New Volatile Additives for High Performance Organic Solar Cells. Adv. Funct. Mater. 2024, 34, 2402281.
- 23 Wu, W.; Luo, Y.; Dela Peña, T.; Yao, J.; Qammar, M.; Li, M.; Yan, H.; Wu, J.; Ma, R.; Li, G. Defining Solid Additive's Pivotal Role on Morphology Regulation in Organic Solar Cells Produced by Layer-by-layer Deposition. Adv. Energy Mater. 2024, 14, 2400354.
- 24 Zhou, M.; Liao, C.; Duan, Y.; Xu, X.; Yu, L.; Li, R.; Peng, Q. 19.10% Efficiency and 80.5% Fill Factor Layer-by-Layer Organic Solar Cells Realized by 4-Bis(2-Thienyl)Pyrrole-2,5-Dione Based Polymer Additives for Inducing Vertical Segregation Morphology. Adv. Mater. 2023, 35, 2208279.
- 25 Yu, R.; Wu, G.; Cui, Y.; Wei, X.; Hong, L.; Zhang, T.; Zou, C.; Hu, S.; Hou, J.; Tan, Z. Multi-Functional Solid Additive Induced Favorable Vertical Phase Separation and Ordered Molecular Packing for Highly Efficient Layer-by-Layer Organic Solar Cells. Small 2021, 17, 2103497.
- 26 Wu, Y.; Li, P.; Yu, S.; Min, Y.; Xiao, L. Layer-by-Layer-Processed All-Polymer Solar Cells with Enhanced Performance Enabled by Regulating the Microstructure of Upper Layer. Molecules 2024, 29, 2879.
- 27 Ran, Y.; Liang, C.; Xu, Z.; Jing, W.; Xu, X.; Duan, Y.; Li, R.; Yu, L.; Peng, Q. Developing Efficient Benzene Additives for 19.43% Efficiency of Organic Solar Cells by Crossbreeding Effect of Fluorination and Bromination. Adv. Funct. Mater. 2024, 34, 2311512.
- 28 Lin, T.; Hai, Y.; Luo, Y.; Feng, L.; Jia, T.; Wu, J.; Ma, R.; Peña, T.; Li, Y.; Xing, Z.; Li, M.; Wang, M.; Xiao, B.; Wong, K.; Liu, S.; Li, G. Isomerization of Benzothiadiazole Yields a Promising Polymer Donor and Organic Solar Cells with Efficiency of 19.0%. Adv. Mater. 2024, 36, 2312311.
- 29 Sun, Y.; Nian, L.; Kan, Y.; Ren, Y.; Chen, Z.; Zhu, L.; Zhang, M.; Yin, H.; Xu, H.; Li, J.; Hao, X.; Liu, F.; Gao, K.; Li, Y. Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells. Joule 2022, 6, 2835–2848.
- 30 Miao, Y.; Sun, Y.; Zou, W.; Zhang, X.; Kan, Y.; Zhang, W.; Jiang, X.; Wang, X.; Yang, R.; Hao, X.; Geng, L.; Xu, H.; Gao, K. Isomerization Engineering of Solid Additives Enables Highly Efficient Organic Solar Cells via Manipulating Molecular Stacking and Aggregation of Active Layer. Adv. Mater. 2024, 36, 2406623.
- 31 Ma, R.; Zhou, K.; Sun, Y.; Liu, T.; Kan, Y.; Xiao, Y.; Dela Peña, T.; Li, Y.; Zou, X.; Xing, Z.; Luo, Z.; Wong, K.; Lu, X.; Ye, L.; Yan, H.; Gao, K. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter 2022, 5, 725–734.