Synthetic Investigation toward Acyl Group-Free Escin Derivatives
Xin Lv
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
Search for more papers by this authorCorresponding Author
Jin-Xi Liao
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
E-mail: [email protected]; [email protected]Search for more papers by this authorZhen-Qiang Li
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
Search for more papers by this authorZhi-Sheng Xiong
Jiangxi Foodmate Biotechnology Co., Ltd., Jiujiang, Jiangxi, 332000 China
Search for more papers by this authorQi-Shuang Yin
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
Search for more papers by this authorHui Liu
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
Search for more papers by this authorYuan-Hong Tu
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
Search for more papers by this authorCorresponding Author
Jian-Song Sun
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
School of Life Science and Health Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122 China
E-mail: [email protected]; [email protected]Search for more papers by this authorXin Lv
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
Search for more papers by this authorCorresponding Author
Jin-Xi Liao
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
E-mail: [email protected]; [email protected]Search for more papers by this authorZhen-Qiang Li
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
Search for more papers by this authorZhi-Sheng Xiong
Jiangxi Foodmate Biotechnology Co., Ltd., Jiujiang, Jiangxi, 332000 China
Search for more papers by this authorQi-Shuang Yin
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
Search for more papers by this authorHui Liu
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
Search for more papers by this authorYuan-Hong Tu
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
Search for more papers by this authorCorresponding Author
Jian-Song Sun
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
School of Life Science and Health Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
With protoescigenin as starting material and through orchestrated application of Yu and Schmidt glycosylation protocols, the synthesis of acyl group-free escin derivatives was achieved for the first time. As the undesired non-specific toxicity, originating from the existence of acyl groups on aglycone, prohibits the wide application of escins, the established strategies toward non-acylated protoescigenin-type saponins would dramatically ease the access to escin derivatives dispense of acyl groups, thereby speeding up the pace of pharmaceutical use of these valuable compounds.
Supporting Information
Filename | Description |
---|---|
cjoc202400778-sup-0001-supinfo.pdfPDF document, 8.7 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Yang, X.-W.; Zhao, J.; Cui, Y.-X.; Liu, X.-H.; Ma, C.-M.; Hattori, M.; Zhang, L.-H. Anti-HIV-1 protease triterpenoid saponins from the seeds of Aesculus chinensis. J. Nat. Prod. 1999, 62, 1510–1513.
- 2 Wang, T.; Fu, F.; Zhang, L.; Han, B.; Zhu, M.; Zhang, X. Effects of escin on acute inflammation and immune system in mice. Pharmacol. Rep. 2009, 61, 697–704.
- 3 Hu, J.-N.; Zhu, X.-M.; Han, L.-K.; Saito, M.; Sun, Y.-S.; Yoshikawa, M.; Kimura, Y.; Zheng, Y.-N. Anti-obesity effects of escins extracted from the seeds of Aesculus turbinata Blume (Hippocastanaceae). Chem. Pharm. Bull. 2008, 56, 12–16.
- 4 Yoshikawa, M.; Murakami, T.; Matsuda, H.; Yamahara, J.; Murakami, N.; Kitagawa, I. Bioactive saponins and glycosides. III. Horse chestnut. (I): the structures, inhibitory effects on ethanol absorption, and hypoglycemic activity of escins Ia, Ib, IIa, IIb, and IIIa from the seeds of Aesculus hippocastanum L. Chem. Pharm. Bull. 1996, 44, 1454–1464.
- 5 Piao, S.; Kang, M.; Lee, Y. J.; Choi, W. S.; Chun, Y.-S.; Kwak, C.; Kim, H. H. Cytotoxic effects of escin on human castration-resistant prostate cancer cells through the induction of apoptosis and G2/M cell cycle arrest. Urology 2014, 84, 982. e1–7.
- 6 Wu, C.-Y.; Jan, J.-T.; Ma, S.-H.; Kuo, C.-J.; Juan, H.-F.; Cheng, Y.-S.; Hsu, H.-H.; Huang, H.-C.; Wu, D.; Brik, A.; Liang, F.-S.; Liu, R.-S.; Fang, J.-M.; Chen, S.-T.; Liang, P.-H.; Wong, C.-H. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 10012–10017.
- 7 Chan, P.-K. Acylation with diangeloyl groups at C21-22 positions in triterpenoid saponins is essential for cytotoxicity towards tumor cells. Biochem. Pharmacol. 2007, 73, 341–350.
- 8 Kim, J. W.; Ha, T.-K.-Q.; Cho, H.; Kim, E.; Shim, S. H.; Yang, J.-L.; Oh, W. K. Antiviral escin derivatives from the seeds of Aesculus turbinate Blume (Japanese horse chestnut). Bioorg. Med. Chem. 2017, 27, 3019–3025.
- 9 Voutquenne, L.; Kokougan, C.; Lavaud, C.; Pouny, I.; Litaudon, M. Triterpenoid saponins and acylated prosapogenins from Harpullia austro-caledonica. Phytochemistry 2002, 59, 825–832.
- 10 Bastola, R.; Noh, G.; Keum, T.; Bashyal, S.; Seo, J.-E.; Choi, J.; Oh, Y.; Cho, Y.; Lee, S. Vaccine adjuvants: smart components to boost the immune system. Arch. Pharm. Res. 2017, 40, 1238–1248.
- 11(a) Ge, S.-J.; Tu, Y.-H.; Xia, J.-H.; Sun, J.-S. Synthetic investigation toward D-ring-functionalized cytotoxic oleanane-type saponins pithedulosides D and E. Eur. J. Org. Chem. 2017, 3929–3934; (b) Zeng, Z.-Y.; Liao, J.-X.; Hu, Z.-N.; Liu, D.-Y.; Zhang, Q.-J.; Sun, J.-S. Synthetic investigation toward QS-21 analogues. Org. Lett. 2020, 22, 8613–8617.
- 12 Zhang, X.; Zhang, S.; Yang, Y.; Wang, D.; Gao, H. Natural barrigenol-like triterpenoids: a comprehensive review of their contributions to medicinal chemistry. Phytochemistry 2019, 161, 41–74.
- 13For reviews, see: (a) Yu, B.; Sun, J. S.; Yang, X. Y., Assembly of Naturally Occurring Glycosides, Evolved Tactics, and Glycosylation Methods. Acc. Chem. Res. 2012, 45, 1227–1236; (b) Yang, Y.; Laval, S.; Yu, B., Chemical Synthesis of Saponins. Adv. Carbohydr. Chem. Biochem. 2014, 71, 137–226; (c) Xu, P.; Yu, B. Chemical synthesis of saponins: An update. Adv. Carbohydr. Chem. Biochem. 2021, 79, 1–62
- 14 Li, Y.; Yang, Y.; Yu, B. An efficient glycosylation protocol with glycosyl ortho-alkynylbenzoates as donors under the catalysis of Ph3PAuOTf. Tetrahedron Lett. 2008, 49, 3604–3608.
- 15 Schmidt, R. R.; Michel, J. Facile synthesis of α- and β-O-glycosyl imidates; preparation of glycosides and disaccharides. Angew. Chem. Int. Ed. Engl. 1980, 19, 731–732.
- 16 Zeng, Z.-Y.; Liao, J.-X.; Hu, Z.-N.; Liu, D.-Y.; Zhang, Q.-J.; Sun, J.-S. Chemical synthesis of quillaic acid, the aglycone of QS-21. Org. Chem. Front. 2021, 8, 748–753.
- 17 Yin, Q. Masteral Dissertation, Jiangxi Normal University, Nanchang, China, 2020.
- 18 Liu, H.; Zhou, S.-Y.; Wen, G.-E.; Liu, X.-X.; Liu, D.-Y.; Zhang, Q.-J.; Schmidt, R. R.; Sun, J.-S. The 2,2-dimethyl-2-(ortho-nitrophenyl)acetyl (DMNPA) group: a novel protecting group in carbohydrate chemistry. Org. Lett. 2019, 21, 8049–8052.
- 19 Liu, H.; Hansen, T.; Zhou, S.-Y.; Wen, G.-E.; Liu, X.-X.; Zhang, Q.-J.; Codee, J. D. C.; Schmidt, R. R.; Sun, J.-S. Dual-participation protecting group solves the anomeric stereocontrol problem in glycosylation reactions. Org. Lett. 2019, 21, 8713–8717.
- 20 Zhou, S.-Y.; Hu, X.-P.; Liu, H.-J.; Zhang, Q.-J.; Liao, J.-X.; Tu, Y.-H.; Sun, J.-S. 8-(Methyltosylaminoethynyl)-1-naphthyl (MTAEN) glycosides: potent donors in glycosides synthesis. Org. Lett. 2022, 24, 653–657.
- 21 Yasomanee, J. P.; Demchenko, A. V. Effect of remote picolinyl and picoloyl substituents on the stereoselectivity of chemical glycosylation. J. Am. Chem. Soc. 2012, 134, 20097–20102.
- 22 Liu, X.; Wen, G.-E.; Liu, J.-C.; Liao, J.-X.; Sun, J.-S. Total synthesis of scutellarin and apigenin 7-O-β-D-glucuronide. Carbohydr. Res. 2019, 475, 69–73.
- 23 Liu, H.; Liao, J.-X.; Hu, Y.; Tu, Y.-H.; Sun, J.-S. A highly efficient approach to construct (epi)-podophyllotoxin-4-O-glycosidic linkages as well as its application in concise synthesis of etoposide and teniposide. Org. Lett. 2016, 18, 1294–1297.
- 24 van der Bos, L. J.; Codee, J. D. C.; Litjens, R. E. J. N.; Dinkelaar, J.; Overkleeft, H. S.; van der Marel, G. A. Uronic acids in oligosaccharides synthesis. Eur. J. Org. Chem. 2007, 2007, 3963–3976.
- 25See Supporting Information.
- 26 Yu, B.; Sun, J.; Yang, X. Assembly of naturally occurring glycosides, evolved tactics, and glycosylation methods. Acc. Chem. Res. 2012, 45, 1227–1236.
- 27 Zhao, G.-L.; Yan, W.-D. Synthesis of Betulin-3-yl-β-D-Glucopyranoside. J. Carbohyd. Chem. 2009, 28, 234–243.
- 28 Ziegler, T.; Bien, F.; Jurisch, C. Chemoenzymatic synthesis of enantiomerically pure alkene 1,2-diols and glycosides thereof. Tetrahedron: Asymmetry 1998, 9, 765–780.
- 29 Yang, W.-Z.; Sun, J.-S.; Yang, Z.-Y.; Han, W.; Zhang, W.-D.; Yu, B. Efficient synthesis of kaempferol 3,7-O-bisglycosides via successive glycosylation with glycosyl ortho-alkynylbenzoates and trifluoroacetimidates. Tetrahedron Lett. 2012, 53, 2773–2776.
- 30 Ogawa, A.; Curran, D. P. Benzotrifluoride: a useful alternative solvent for organic reactions currently conducted in dichloromethane and related solvent. J. Org. Chem. 1997, 62, 450–451.
- 31 Ma, X.; Zheng, Z.; Fu, Y.; Zhu, X.; Liu, P.; Zhang, L. A “traceless” directing group enables catalytic SN2 glycosylaiton toward 1,2-cis-glycopyranosides. J. Am. Chem. Soc. 2021, 143, 11908–11913.
- 32 Yang, F.; Hou, W.; Zhu, D.; Tang, Y.; Yu, B. A stereoselective glycosylation approach to the construction of 1,2-trans-β-D-glycosidic linkages and convergent synthesis of saponins. Chem. Eur. J. 2022, 28, e202104002.
- 33 Okada, Y.; Nagata, O.; Taira, M.; Yamada, H. Highly β-Selective and Direct Formation of 2-O-Glycosylated Glucosides by Ring Restriction into Twist-Boat. Org. Lett. 2007, 9, 2755–2758.