Unveiling the Mechanisms of Apoptosis Induction by Deep-Sea-Derived Polyketide-Terpenoid Hybrids from Penicillium allii-sativi: A Focus on Mitochondrial and mTOR Pathways
Chun-Lan Xie
Hainan Pharmaceutical Research and Development Science Park, Hainan Academy of Medical Sciences, Hainan Medical University, No. 3 Xueyuan Road, Haikou, Hainan, 571199 China
Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, Fujian, 361005 China
School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian, 361102 China
These authors contributed equally.
Search for more papers by this authorTai-Zong Wu
Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, Fujian, 361005 China
These authors contributed equally.
Search for more papers by this authorDuo Zhang
School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian, 361102 China
These authors contributed equally.
Search for more papers by this authorYuan Wang
Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, Fujian, 361005 China
Search for more papers by this authorTing Lin
School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian, 361102 China
Search for more papers by this authorHai-Feng Chen
School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian, 361102 China
Search for more papers by this authorXiao-Kun Zhang
School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian, 361102 China
Search for more papers by this authorCorresponding Author
Xian-Wen Yang
Hainan Pharmaceutical Research and Development Science Park, Hainan Academy of Medical Sciences, Hainan Medical University, No. 3 Xueyuan Road, Haikou, Hainan, 571199 China
Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, Fujian, 361005 China
E-mail: [email protected]Search for more papers by this authorChun-Lan Xie
Hainan Pharmaceutical Research and Development Science Park, Hainan Academy of Medical Sciences, Hainan Medical University, No. 3 Xueyuan Road, Haikou, Hainan, 571199 China
Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, Fujian, 361005 China
School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian, 361102 China
These authors contributed equally.
Search for more papers by this authorTai-Zong Wu
Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, Fujian, 361005 China
These authors contributed equally.
Search for more papers by this authorDuo Zhang
School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian, 361102 China
These authors contributed equally.
Search for more papers by this authorYuan Wang
Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, Fujian, 361005 China
Search for more papers by this authorTing Lin
School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian, 361102 China
Search for more papers by this authorHai-Feng Chen
School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian, 361102 China
Search for more papers by this authorXiao-Kun Zhang
School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian, 361102 China
Search for more papers by this authorCorresponding Author
Xian-Wen Yang
Hainan Pharmaceutical Research and Development Science Park, Hainan Academy of Medical Sciences, Hainan Medical University, No. 3 Xueyuan Road, Haikou, Hainan, 571199 China
Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, Fujian, 361005 China
E-mail: [email protected]Search for more papers by this authorComprehensive Summary
A chemical investigation of the deep-sea-derived fungus Penicillium allii-sativi MCCC 3A00580 resulted in the discovery of four new meroterpenoids (1—4) and one related known co-metabolite (5). These meroterpenoids showcase unique carbon skeletons featuring a common drimane sesquiterpene part with highly diverse polyketide units. Particularly, compound 1 incorporates a salicylic acid moiety while 2 possesses a rare peroxide bridge in the polyketide part. The structures of new compounds were assigned by extensive spectroscopic analysis, quantum calculations, and biogenetic considerations. Notably, 3 significantly blocked the mTOR signaling pathway, resulting in the arrest of cell cycle at G0-G1 phase and triggering mitochondrial apoptosis in Hela cells. While the previously reported co-metabolite macrophorin A (MPA) effectively triggered cell death in MDA-MB-231 cancer cells by activating apoptosis pathways involving death receptors, mitochondria, mTOR, and TNF.
Supporting Information
Filename | Description |
---|---|
cjoc202400752-sup-0001-supinfo.pdfPDF document, 5.1 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast cancer. Lancet 2021, 397, 1750–1769.
- 2 Bianchini, G.; Balko, J. M.; Mayer, I. A.; Sanders, M. E.; Gianni, L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol. 2016, 13, 674–690.
- 3 Gelmon, K.; Dent, R.; Mackey, J. R.; Laing, K.; McLeod, D.; Verma, S. Targeting triple-negative breast cancer: optimising therapeutic outcomes. Ann. Oncol. 2012, 23, 2223–2234.
- 4 Wang, X.; Tokheim, C.; Gu, S. S.; Wang, B.; Tang, Q.; Li, Y.; Traugh, N.; Zeng, Z.; Zhang, Y.; Li, Z.; Zhang, B.; Fu, J.; Xiao, T.; Li, W.; Meyer, C. A.; Chu, J.; Jiang, P.; Cejas, P.; Lim, K.; Long, H.; Brown, M.; Liu, X. S. In vivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target. Cell 2021, 184, 5357–5374.
- 5 Dowling, C. M.; Hollinshead, K. E. R.; Di Grande, A.; Pritchard, J.; Zhang, H.; Dillon, E. T.; Haley, K.; Papadopoulos, E.; Mehta, A. K.; Bleach, R.; Lindner, A. U.; Mooney, B.; Düssmann, H.; O'Connor, D.; Prehn, J. H. M.; Wynne, K.; Hemann, M.; Bradner, J. E.; Kimmelman, A. C.; Guerriero, J. L.; Cagney, G.; Wong, K. K.; Letai, A. G.; Chonghaile, T. N. Multiple screening approaches reveal HDAC6 as a novel regulator of glycolytic metabolism in triple-negative breast cancer. Sci. Adv. 2021, 7, eabc4897.
- 6 Ni Chonghaile, T.; Sarosiek, K. A.; Vo, T. T.; Ryan, J. A.; Tammareddi, A.; Moore Vdel, G.; Deng, J.; Anderson, K. C.; Richardson, P.; Tai, Y. T.; Mitsiades, C. S.; Matulonis, U. A.; Drapkin, R.; Stone, R.; Deangelo, D. J.; McConkey, D. J.; Sallan, S. E.; Silverman, L.; Hirsch, M. S.; Carrasco, D. R.; Letai, A. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 2011, 334, 1129–1133.
- 7 Balko, J. M.; Giltnane, J. M.; Wang, K.; Schwarz, L. J.; Young, C. D.; Cook, R. S.; Owens, P.; Sanders, M. E.; Kuba, M. G.; Sánchez, V.; Kurupi, R.; Moore, P. D.; Pinto, J. A.; Doimi, F. D.; Gómez, H.; Horiuchi, D.; Goga, A.; Lehmann, B. D.; Bauer, J. A.; Pietenpol, J. A.; Ross, J. S.; Palmer, G. A.; Yelensky, R.; Cronin, M.; Miller, V. A.; Stephens, P. J.; Arteaga, C. L. Molecular profiling of the residual disease of triple- negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 2014, 4, 232–245.
- 8 Corkery, B.; Crown, J.; Clynes, M.; Odonovan, N. Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer. Ann. Oncol. 2009, 20, 862–867.
- 9 Wang, W.; Han, D.; Cai, Q. B.; Shen, T.; Dong, B. N.; Lewis, M. T.; Wang, R. S.; Meng, Y. L.; Zhou, W. L.; Yi, P.; Creighton, C. J.; Moore, D. D.; Yang, F. MAPK4 promotes triple negative breast cancer growth and reduces tumor sensitivity to PI3K blockade. Nat. Commun. 2022, 13, 245.
- 10 Di Cosimo, S. Advancing immunotherapy for early-stage triple- negative breast cancer. Lancet 2020, 396, 1046–1048.
- 11
Zou, Z. B.; Wu, T. Z.; Xie, C. L.; Wang, Y.; Li, Y.; Zhang, G.; Chao, R.; Luo, L. Z.; Li, L. S.; Yang, X. W. neo-Dicitrinols A–C: unprecedented PKS-NRPS hybrid citrinin dimers with ferroptosis inhibitory activity from the deep-sea-derived Penicillium citrinum W22. Chin. Chem. Lett. 2024, doi: https://doi.org/10.1016/j.cclet.2024.109723.
10.1016/j.cclet.2024.109723 Google Scholar
- 12 Zou, Z. B.; Li, Y.; Wang, Y.; Xie, C. L.; Li, Z. Q.; Nie, S. S.; Li, Y.; Fang, S. Y.; Zhong, T. H.; Li, L. S.; Yang, X. W. Stephaochratidin A, a rare stephacidin-asperochratide hybrid with ferroptosis Inhibitory activity from the deep-sea-derived Aspergillus ochraceus. Org. Lett. 2024, 26, 5695–5699.
- 13 He, Z. H.; Xie, C. L.; Wu, T.; Zhang, Y.; Zou, Z. B.; Xie, M. M.; Xu, L.; Capon, R. J.; Xu, R.; Yang, X. W. Neotricitrinols A–C, unprecedented citrinin trimers with anti-osteoporosis activity from the deep-sea- derived Penicillium citrinum W23. Bioorg. Chem. 2023, 139, 106756.
- 14 He, Z. H.; Xie, C. L.; Wu, T.; Yue, Y. T.; Wang, C. F.; Xu, L.; Xie, M. M.; Zhang, Y.; Hao, Y. J.; Xu, R.; Yang, X. W. Tetracyclic steroids bearing a bicyclo[4.4.1] ring system as potent antiosteoporosis agents from the deep-sea-derived fungus Rhizopus sp. W23. J. Nat. Prod. 2023, 86, 157–165.
- 15 Xie, C. L.; Wu, T. Z.; Wang, Y.; Capon, R. J.; Xu, R.; Wen, Y. X. Genome mining of a deep-sea-derived Penicillium allii-sativi revealed polyketide-terpenoid hybrids with antiosteoporosis activity. Org. Lett. 2024, 26, 3889–3895.
- 16 Xie, C. L.; Zhang, D.; Guo, K. Q.; Yan, Q. X.; Zou, Z. B.; He, Z. H.; Wu, Z.; Zhang, X. K.; Chen, H. F.; Yang, X. W. Meroterpenthiazole A, a unique meroterpenoid from the deep-sea-derived Penicillium allii-sativi, significantly inhibited retinoid X receptor (RXR)-α transcriptional effect. Chin. Chem. Lett. 2022, 33, 2057–2059.
- 17 Xie, C. L.; Zhang, D.; Lin, T.; He, Z. H.; Yan, Q. X.; Cai, Q.; Zhang, X. K.; Yang, X. W.; Chen, H. F. Antiproliferative sorbicillinoids from the deep-sea-derived Penicillium allii-sativi. Front. Microbiol. 2021, 11, 636948.
- 18 Xie, C. L.; Liu, Q.; He, Z. H.; Gai, Y. B.; Zou, Z. B.; Shao, Z. Z.; Liu, G. M.; Chen, H. F.; Yang, X. W. Discovery of andrastones from the deep-sea- derived Penicillium allii-sativi MCCC 3A00580 by OSMAC strategy. Bioorg. Chem. 2021, 108, 104671.
- 19 Xie, C. L.; Xia, J. M.; Lin, T.; Lin, Y. J.; Lin, Y. K.; Xia, M. L.; Chen, H. F.; Luo, Z. H.; Shao, Z. Z.; Yang, X. W. Andrastone A from the deep-sea-derived fungus Penicillium allii-sativi acts as an inducer of caspase and RXRα-dependent apoptosis. Front. Chem. 2019, 7, 692.
- 20 Zhu, Y.; Ouyang, Z.; Du, H.; Wang, M.; Wang, J.; Sun, H.; Kong, L.; Xu, Q.; Ma, H.; Sun, Y. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharm. Sin. B 2022, 12, 4011–4039.
- 21 Zhang, Y.; Lv, P.; Ma, J.; Chen, N.; Guo, H.; Chen, Y.; Gan, X.; Wang, R.; Liu, X.; Fan, S.; Cong, B.; Kang, W. Antrodia cinnamomea exerts an anti-hepatoma effect by targeting PI3K/AKT-mediated cell cycle progression in vitro and in vivo. Acta Pharm. Sin. B 2022, 12, 890−906.
- 22 He, Z. X.; Jiao, H. M.; An, Q.; Zhang, X.; Zengyangzong, D.; Xu, J. L.; Liu, H. M.; Ma, L. Y.; Zhao, W. Discovery of novel 4-phenylquinazoline- based BRD4 inhibitors for cardiac fibrosis. Acta Pharm. Sin. B 2022, 12, 291−307.
- 23 Lin, X.; Wu, Q.; Yu, Y.; Liang, Z.; Liu, Y.; Zhou, L.; Tang, L.; Zhou, X. Penicilliumin B, a novel sesquiterpene methylcyclopentenedione from a deep sea-derived Penicillium strain with renoprotective activities. Sci. Rep. 2017, 7, 10757−10763.
- 24 Nishiyama, M.; Maeda, H.; Tonouchi, A.; Hashimoto, M. Neomacrophorin and premacrophorin congeners from Trichoderma sp. 1212-03. Tetrahedron 2019, 75, 2993–3000.
- 25 Fujimoto, H.; Nakamura, E.; Kim, Y. P.; Okuyama, E.; Ishibashi, M.; Sassa, T. Immunomodulatory constituents from an Ascomycete, Eupenicillium crustaceum, and revised absolute structure of macrophorin D. J. Nat. Prod. 2001, 64, 1234−1237.
- 26 Fu, Y.; Wu, P.; Xue, J. h.; Wei, X. y. Cytotoxic and antibacterial quinone sesquiterpenes from a Myrothecium Fungus. J. Nat. Prod. 2014, 77, 1791–1799.
- 27 Garai, S.; Mehta, G. Total synthesis of bioactive drimane-epoxyquinol hybrid natural products: macrophorin A, 4'-oxomacrophorin A, and 1'-epi-craterellin A. Tetrahedron Lett. 2014, 55, 6252−6256.
- 28 Tang, M. C.; Cui, X. Q.; He, X. Q.; Ding, Z.; Zhu, T. J.; Tang, Y.; Li, D. H. Late-stage terpene cyclization by an integral membrane cyclase in the biosynthesis of isoprenoid epoxycyclohexenone natural products. Org. Lett. 2017, 19, 5376−5379.
- 29 Mohamed, I. E.; Gross, H.; Pontius, A.; Kehraus, S.; Krick, A.; Kelter, G.; Maier, A.; Fiebig, H.-H.; König, G. M. Epoxyphomalin A and B, prenylated polyketides with potent cytotoxicity from the marine- derived fungus Phoma sp. Org. Lett. 2009, 11, 5014–5017.
- 30 Schenone, M.; Vlado, D.; Wagner, B. K.; Clemons, P. A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 2013, 9, 232–240.
- 31 Xie, C. L.; Zhang, D.; Xia, J. M.; Hu, C. C.; Lin, T.; Lin, Y. K.; Wang, G. H.; Tian, W. J.; Li, Z. P.; Zhang, X. K.; Yang, X. W.; Chen, H. F. Steroids from the deep-sea-derived fungus Penicillium granulatum MCCC 3A00475 induced apoptosis via retinoid X receptor RXRa pathway. Mar. Drugs 2019, 17, 178.
- 32 Xie, C. L.; Yue, Y. T.; Xu, J. P.; Li, N.; Lin, T.; Ji, G. R.; Yang, X. W.; Xu, R. Penicopeptide A (PPA) from the deep-sea-derived fungus promotes osteoblast-mediated bone formation and alleviates ovariectomy-induced bone loss by activating the AKT/GSK-3β/β-catenin signaling pathway. Pharmacol. Res. 2023, 197, 106968–106984.
- 33 Chen, Z.; Zhang, D.; Yan, S.; Hu, C.; Huang, Z.; Li, Z.; Peng, S.; Li, X.; Zhu, Y.; Yu, H.; Lian, B.; Kang, Q.; Li, M.; Zeng, Z.; Zhang, X. K.; Su, Y. SAR study of celastrol analogs targeting Nur77-mediated inflammatory pathway. Eur. J. Med. Chem. 2019, 177, 171–187.
- 34 Xu, H. N.; Huang, W. D.; Cai, Y.; Ding, M.; Gu, J. F.; Wei, N.; Sun, L. Y.; Cao, X.; Li, H. G.; Zhang, K. J.; Liu, X. R.; Liu, X. Y. HCCS1-armed, quadruple-regulated oncolytic adenovirus specific for liver cancer as a cancer targeting gene-viro-therapy strategy. Mol. Cancer 2011, 10, 133–146.
- 35 Xie, G. B.; Zhou, Y. Q.; Tu, X. H.; Ye, X. H.; Xu, L.; Xiao, Z. J.; Wang, Q. Q.; Wang, X.; Du, M. X.; Chen, Z. W.; Chi, X. Q.; Zhang, X. L.; Xia, J.; Zhang, X. W.; Zhou, Y. X.; Li, Z. X.; Xie, C. R.; Sheng, L. Y.; Zeng, Z. P.; Zhou, H.; Yin, Z. Y.; Su, Y.; Xu, Y.; Zhang, X. K. Centrosomal localization of RXRα promotes PLK1 activation and mitotic progression and constitutes a tumor vulnerability. Dev. Cell 2020, 55, 707−722.
- 36 Luo, K.; Huang, W.; Qiao, L.; Zhang, X.; Yan, D.; Ning, Z.; Ma, C.; Dang, H.; Wang, D.; Guo, H.; Xie, L.; Cheng, J. Dendrocalamus latiflorus and its component rutin exhibit glucose-lowering activities by inhibiting hepatic glucose production via AKT activation. Acta Pharm. Sin. B 2022, 12, 2239−2251.
- 37 Ji, L. Y.; Song, T.; Ge, C. L.; Wu, Q. L.; Ma, L. Y.; Chen, X. B.; Chen, T.; Chen, Q.; Chen, Z. T.; Chen, W. D. Identification of bioactive compounds and potential mechanisms of scutellariae radix-coptidis rhizoma in the treatment of atherosclerosis by integrating network pharmacology and experimental validation. Biomed. Pharmacother. 2023, 165, 115210−115220.