Epitaxially Growing 2D RGB Trichromatic Cocrystal Nanomeshes to Trigger Cross-Modulation White Light Emission
Wenyubin Luo
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009 China
Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009 China
Search for more papers by this authorCheng Zhang
Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009 China
Search for more papers by this authorShan Yang
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009 China
Search for more papers by this authorLei Ding
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009 China
Search for more papers by this authorYang Li
Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009 China
Search for more papers by this authorYanqiu Sun
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009 China
Search for more papers by this authorCorresponding Author
Qichun Zhang
Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy, City University of Hong Kong, Hong Kong, 999077 China
E-mail: [email protected]Search for more papers by this authorWenyubin Luo
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009 China
Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009 China
Search for more papers by this authorCheng Zhang
Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009 China
Search for more papers by this authorShan Yang
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009 China
Search for more papers by this authorLei Ding
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009 China
Search for more papers by this authorYang Li
Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009 China
Search for more papers by this authorYanqiu Sun
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009 China
Search for more papers by this authorCorresponding Author
Qichun Zhang
Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy, City University of Hong Kong, Hong Kong, 999077 China
E-mail: [email protected]Search for more papers by this authorComprehensive Summary
Considering their oriented crystalline structure and high luminescent efficiency, the exploration of multi-component organic cocrystal systems with tunable supramolecular nanostructures and potential RGB light emission has emerged as a captivating but challenging subject. Here, we propose a straightforward synthetic strategy to precisely govern the assembly, structure and structure-property relationship of organic cocrystals. By employing the single-crystalline template-assisted epitaxial growth (SCT-EG) method, the two-dimensional (2D) highly-aligned cocrystal nanomeshes are firstly developed to afford an exceptional RGB trichromatic system, triggering cross-modulation white light emission (WLE) with remarkable stability and regeneration capacity over six months. The transformation from random 1D microstructures to uniformly-oriented 2D nanomeshes can be attributed to the regulatory competitive intermolecular π-π, CT interactions, and partial H bond interactions among cocrystals. Moreover, the successful construction of 2D RGB trichromatic cocrystal nanomeshes system holds promise to generate full-color display, which can function as multicolor inks for photonic dynamic recognition, information encryption, and decryption.
Supporting Information
Filename | Description |
---|---|
cjoc202400687-sup-0001-supinfo.pdfPDF document, 2.7 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1(a) Sun, L.; Zhu, W.; Zhang, X.; Li, L.; Dong, H.; Hu, W. Creating organic functional materials beyond chemical bond synthesis by organic cocrystal engineering. J. Am. Chem. Soc. 2021, 143, 19243–19256;
(b) Yang, Q. L.; Fang, P.; Mei, T. S. Recent Advances in Organic Electrochemical C-H Functionalization. Chin. J. Chem. 2018, 36, 338–352;
(c) Zhang, D.; Li, S.; Gao, S.; Fu, S.; Liu, K.; He, D.; Liu, H.; Zhang, X.; Hu, W. NIR-II organic photothermal cocrystals with strong charge transfer interaction for flexible wearable heaters. Chin. J. Chem. 2024, 36, 42, 1563–1570.
10.1002/cjoc.202300738 Google Scholar
- 2(a) Huang, Y.; Ning, L.; Zhang, X.; Zhou, Q.; Gong, Q.; Zhang, Q. Stimuli-fluorochromic smart organic materials. Chem. Soc. Rev. 2024, 53, 1090–1166;
(b) Lei, Y. L.; Jin, Y.; Zhou, D. Y.; Gu, W.; Shi, X. B.; Liao, L. S.; Lee, S. T. White-light emitting microtubes of mixed organic charge-transfer complexes. Adv. Mater. 2012, 24, 5345–5351;
(c) Ostroverkhova, O. Organic optoelectronic materials: mechanisms and applications. Chem. Rev. 2016, 116, 13279–13412;
(d) Liu, Y.; Jiang, Z.; Wang, L.; Cheng, Y.; Fan, W.; Bian, L.; Shi, Y.; Zheng, L. Y.; Cao, Q. E. Hydrogen bond-modulating luminescent properties of organic cocrystal materials. Cryst. Growth Des. 2023, 24, 132–142;
10.1021/acs.cgd.3c00776 Google Scholar(e) Zhang, C.; Wang, X.; Li, Y.; Sun, Y. Q.; Zhang, Q. Spin in organic cocrystals. Chem. Eur. J. 2023, 29, 32; (f) Deng, X.; Yu, X.; Xiao, J.; Zhang, Q. Our Research Progress in Hetero-aggregation and Homo-aggregation of Organic π-Conjugated Systems. Aggregate 2021, 2, 3;10.1002/agt2.35 Google Scholar(g) Wang, Z.; Yu, F.; Chen, W.; Wang, J.; Liu, J.; Yao, C.; Zhao, J.; Dong, H.; Hu, W.; Zhang, Q. Rational Control of Charge Transfer Excitons Toward High-contrast Reversible Mechanoresponsive Luminescent Switching. Angew. Chem. Int. Ed. 2020, 59, 17580–17586.
- 3(a) Stupp, S. I.; Palmer, L. C. Supramolecular chemistry and self-assembly in organic materials design. Chem. Mater. 2013, 26, 507–518; (b) Sun, Y.; Lei, Y.; Hu, W.; Wong, W. Y. Epitaxial growth of nanorod meshes from luminescent organic cocrystals via crystal transformation. J. Am. Chem. Soc. 2020, 142, 7265–7269; (c) Zhuo, M. P.; Wei, X.; Li, Y.; Shi, Y.; He, G.; Su, H.; Zhang, K.; Guan, J.; Wang, X.; Wu, Y.; Liao, L. Visualizing the interfacial-layer-based epitaxial growth process toward organic core-shell architectures. Nat. Commun. 2024, 15, 1130.
- 4(a) Ye, X.; Liu, Y.; Guo, Q.; Han, Q.; Ge, C.; Cui, S.; Zhang, L.; Tao, X. 1D versus 2D cocrystals growth via microspacing in-air sublimation. Nat. Commun. 2019, 10, 761; (b) Wakahara, T.; Angelo, P.; Miyazawa, K. i.; Nemoto, Y.; Ito, O.; Tanigaki, N.; Bradley, D. D. C.; Anthopoulos, T. D. Fullerene/cobalt porphyrin hybrid nanosheets with ambipolar charge transporting characteristics. J. Am. Chem. Soc. 2012, 134, 7204–7206.
- 5(a) Wang, Y.; Wu, H.; Zhu, W.; Zhang, X.; Liu, Z.; Wu, Y.; Feng, C.; Dang, Y.; Dong, H.; Fu, H. Cocrystal engineering: toward solution- processed near-infrared 2D organic cocrystals for broadband photodetection. Angew. Chem. Int. Ed. 2021, 60, 6344–6350;
(b) Kampar, E.; Neilands, O. Degree of charge transfer in donor-acceptor systems of the π-π Type. Russ. Chem. Rev. 1986, 55, 334–342;
10.1070/RC1986v055n04ABEH003193 Google Scholar(c) Thakuria, R.; Nath, N. K.; Saha, B. K. The nature and applications of π-π interactions: a perspective. Cryst. Growth Des. 2019, 19, 523–528; (d) Zhang, W.; Li, Y.; Zhang, C.; Yuan, J.; Wang, Y.; Cheng, X.; Qian, W.; Sun, S.; Li, Y. Synchronous regulation of hydrophobic molecular architecture and interface engineering for robust WORM-type memristor. Adv. Funct. Mater. 2024, 2404625.
- 6(a) Zhang, H.; Lin, D.-Q.; Wu, M. Z.; Jin, D.; Huang, L.; Xie, L. H. Multicolor emission of organic microcrystals with charge transfer interactions through cocrystal engineering. Cryst. Growth Des. 2023, 23, 6548–6556; (b) Liang, J.; Tang, B. Z.; Liu, B. Specific light-up bioprobes based on AIEgen conjugates. Chem. Soc. Rev. 2015, 44, 2798–2811.
- 7(a) Ye, H.; Liu, G.; Liu, S.; Casanova, D.; Ye, X.; Tao, X.; Zhang, Q.; Xiong, Q. Molecular-barrier-enhanced aromatic fluorophores in cocrystals with unity quantum efficiency. Angew. Chem. Int. Ed. 2018, 57, 1928–1932; (b) Park, S. K.; Varghese, S.; Kim, J. H.; Yoon, S.-J.; Kwon, O. K.; An, B. K.; Gierschner, J.; Park, S. Y. Tailor-made highly luminescent and ambipolar transporting organic mixed stacked charge-transfer crystals: an isometric donor-acceptor approach. J. Am. Chem. Soc. 2013, 135, 4757–4764.
- 8(a) Zhu, W.; Yi, Y.; Zhen, Y.; Hu, W. Precisely tailoring the stoichiometric stacking of perylene-TCNQ co-crystals towards different nano and microstructures with varied optoelectronic performances. Small 2014, 11, 2150–2156; (b) Zhang, X.; Zhang, X.; Shi, W.; Meng, X.; Lee, C.; Lee, S. Morphology-controllable synthesis of pyrene nanostructures and its morphology dependence of optical properties. J. Phys. Chem. B 2005, 109, 18777–18780.
- 9(a) Ham, S.; Lee, S. H.; Chung, H.; Kim, D. Structure-property relationships in two-dimensionally extended benzoporphyrin molecules probed using single-molecule fluorescence spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 7521–7526; (b) Wang, Y.; Zhu, W.; Du, W.; Liu, X.; Zhang, X.; Dong, H.; Hu, W. Cocrystals strategy towards materials for near-infrared photothermal conversion and imaging. Angew. Chem. Int. Ed. 2018, 57, 3963–3967.
- 10 Zhu, T.; Zheng, S.; Yang, T.; Yuan, W. Z. Co-crystallization and clustering afforded simultaneously boosted efficiency, lifetime, and color tunability of organic afterglows. J. Phys. Chem. Lett. 2023, 14, 6451–6458.
- 11(a) Zhuo, M. P.; He, G. P.; Yuan, Y.; Tao, Y. C.; Wei, G. Q.; Wang, X. D.; Lee, S. T.; Liao, L. S. Super-stacking self-assembly of organic topological heterostructures. CCS Chem. 2021, 3, 413–424; (b) Del Guerzo, A.; Olive, A. G. L.; Reichwagen, J.; Hopf, H.; Desvergne, J. P. Luminescent charge-transfer complexes: tuning emission in binary fluorophore mixtures. J. Am. Chem. Soc. 2005, 127, 17984–17985.
- 12 Gujrati, M. D.; Kumar, N. S. S.; Brown, A. S.; Captain, B.; Wilson, J. N. Luminescent charge-transfer complexes: tuning emission in binary fluorophore mixtures. Langmuir 2011, 27, 6554–6558.
- 13(a) Sun, Y.; Lei, Y.; Liao, L.; Hu, W. Competition between arene-perfluoroarene and charge-transfer interactions in organic light-harvesting systems. Angew. Chem. Int. Ed. 2017, 129, 10488–10492;
10.1002/ange.201702084 Google Scholar(b) Zhang, C.; Chen, M.; Wang, G.; Teng, M.; Ling, S.; Wang, Y.; Su, Z.; Gao, K.; Yang, X.; Ma, C.; Li, Y. Variable learning-memory behavior from π-conjugated ligand to ligand-containing cobalt (II) complex. Chin. J. Chem. 2022, 40, 2296–2304.
- 14(a) Zhu, W.; Zheng, R.; Zhen, Y.; Yu, Z.; Dong, H.; Fu, H.; Shi, Q.; Hu, W. Rational design of charge-transfer interactions in halogen-bonded co-crystals toward versatile solid-state optoelectronics. J. Am. Chem. Soc. 2015, 137, 11038–11046;
(b) Wang, S. C.; Zhang, Q. S.; Wang, Z.; Guan, S. Q.; Zhang, X. D.; Xiong, X. H.; Pan, M. Tetraphenylethylene-based hydrogen-bonded organic frameworks (HOFs) with brilliant fluorescence. Angew. Chem. Int. Ed. 2023, 135, 52–62.
10.1002/ange.202315382 Google Scholar
- 15
Qi, Z.; Ma, Y. J.; Yan, D. One-dimensional molecular co-crystal alloys capable of full-color emission for low-loss optical waveguide and optical logic gate. Aggregate 2023, 5, 411.
10.1002/agt2.411 Google Scholar
- 16(a) Huang, Y.; Gong, Q.; Ge, J.; Tang, P.; Yu, F.; Xiao, L., Wang, Z.; Sun, H.; Yu, J.; Li, D.; Xiong, Q.; Zhang, Q. Green grinding-coassembly engineering toward intrinsically luminescent tetracene in cocrystals. ACS Nano 2020, 14, 15962–15972; (b) Liu, H.; Li, Y.; Wang, X. D. Rcent advances on organic donor-acceptor cocrystal: design, synthetic approaches, and optical applications. CrystEngComm 2023, 25, 3126–3141; (c) Wang, W.; Luo, L.; Sheng, P.; Zhang, J.; Zhang, Q. Multi-Functional Features of Organic Charge-Transfer Complexes: Advances and Perspectives. Chem. Eur. J. 2021, 27, 464–490; (d) Zhang, J.; Gu, P.; Long, G.; Ganguly, R.; Li, Y.; Aratani, N.; Yamada, H.; Zhang, Q. Switching Charge-Transfer Characteristic from p-Type to n-Type through Molecule “Doping” (Co-crystallization). Chem. Sci. 2016, 7, 3851–3856.4.
- 17 Chen, Y. T.; Zhuo, M.-P.; Wen, X.; Chen, W.; Zhang, K.Q.; Li, M. D. Organic photothermal cocrystals: Rational design, controlled synthesis, and advanced application. Adv. Sci. 2023, 10, 11.