Organic Polymer Framework Enhanced PEO-Based Electrolyte for Fast Li+ Migration in All-Solid-State Lithium-ion Batteries†
Jun Chen
School of Material Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorQuan Zhou
School of Material Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorXiaoyan Xu
School of Material Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorCorresponding Author
Chuncai Zhou
School of Material Science and Engineering, Tongji University, Shanghai, 201804 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Guorong Chen
Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yan Li
School of Material Science and Engineering, Tongji University, Shanghai, 201804 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorJun Chen
School of Material Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorQuan Zhou
School of Material Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorXiaoyan Xu
School of Material Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorCorresponding Author
Chuncai Zhou
School of Material Science and Engineering, Tongji University, Shanghai, 201804 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Guorong Chen
Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yan Li
School of Material Science and Engineering, Tongji University, Shanghai, 201804 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this author† Dedicated to the Special Issue of Batteries.
Comprehensive Summary
With the rapid development of solid-state batteries, solid-state polymer electrolytes (SPEs) have attracted widespread attention due to their excellent environmental friendliness, designability, and forming film ability. However, due to the limited conductive path of polymers, lithium-ion diffusion kinetics are limited, and low ion conductivity is a huge challenge for SPEs in practical applications. This work provides a polyethylene oxide (PEO) based polymer electrolyte, which has multiple paths of ion diffusion caused by organic polymer framework of poly(hexaazatrinaphthalene) (PHATN). The unique porous channel, the specific surface characteristics, the coordination of -C=N- groups in PHATN with Li+, combined with the mobility of PEO segments, make the SPEs have a good ability to conduct Li+. Interestingly, the PHATN-PEO/lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) composite electrolytes exhibit excellent electrochemical properties. At room temperature, the conductivity of PHATN-PEO electrolyte can reach 1.03 × 10–4 S·cm–1, which is greatly improved compared with 3.9 × 10–6 S·cm–1 of PEO. Delightedly, the lithium-ion transference number of PHATN-PEO electrolyte achieves 0.61, and the electrochemical window increases to 4.82 V. The LFP/1%PH-PEO/Li solid-state batteries show good electrochemical cycles. This work reveals an efficient stratagem for the design of polymer solid-state electrolytes.
Supporting Information
Filename | Description |
---|---|
cjoc202400647-sup-0001-supinfo.pdfPDF document, 879.2 KB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Du, G.; Muhtar, D.; Cao, J. Solid-state composite electrolytes: Turning the natural moat into a thoroughfare. Mater. Chem. Front. 2024, 8, 1250–1281.
- 2 Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.
- 3 Sun, C.; Yusuf, A.; Li, S.; Qi, X.; Ma, Y.; Wang, D. Metal organic frameworks enabled rational design of multifunctional peo-based solid polymer electrolytes. Chem. Eng. J. 2021, 414, 128702.
- 4 Heydarian, A.; Mousavi, S.; Vakilchap, F.; Baniasadi, M. Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries - sciencedirect. J. Power Sources 2018, 378, 19–30.
- 5 Huang, Y.; Yang, H.; Gao, Y.; Chen, G.; Li, Y.; Shi, L.; Zhang, D. Mechanism and solutions of lithium dendrite growth in lithium metal batteries. Mater. Chem. Front. 2024, 8, 1282–1299.
- 6 Chu, J.; Li, Z.; Wang, J.; Huang, G.; Zhang, X. Optimization strategies for key interfaces of llzo-based solid-state lithium metal batteries. Mater. Chem. Front. 2024, 8, 2109–2134.
- 7 Sung, J.; Heo, J.; Kim, D.; Jo, S.; Ha, Y.; Kim, D.; Ahn, S.; Park, J. Recent advances in all-solid-state batteries for commercialization. Mater. Chem. Front. 2024, 8, 1861–1887.
- 8 Bandyopadhyay, S.; Gupta, N.; Joshi, A.; Gupta, A.; Srivastava, R. K.; Kuila, B.; Nandan, B. Solid polymer electrolyte based on an ionically conducting unique organic polymer framework for all-solid-state lithium batteries. ACS Appl. Energy Mater. 2023, 6, 4390–4403.
- 9 Chen, J.; Zhang, J.; Wang, X.; Fu, N.; Yang, Z. Fast ion conduction assisted by covalent organic frameworks in poly(ethylene oxide)-based composite electrolyte enabling high-energy and strong-stability all-solid-state lithium metal batteries. Electrochim. Acta 2023, 449, 142267.
- 10
Liu, Y.; Xu, H.; Liu, W.; Li, G.; Liu, X.; Chen, M.; Chen, Z. Poly(vinylidene fluoride-co-hexafluoropropylene)-based solid polymer electrolyte incorporated with uio-66 for lithium metal batteries. Energy Fuels 2023, 23, 18154–18162.
10.1021/acs.energyfuels.3c02609 Google Scholar
- 11 Chen, S.; Li, Y.; Wang, Y.; Li, Z.; Peng, C.; Feng, Y. Cross-linked single-ion solid polymer electrolytes with alternately distributed lithium sources and ion-conducting segments for lithium metal batteries. Macromolecules 2021, 54, 9135–9144.
- 12 Wu, N.; Chien, P. H.; Qian, Y.; Li, Y.; Xu, H. Enhanced surface interactions enable fast li+ conduction in oxide/polymer composite electrolyte. Angew. Chem. Int. Ed. 2020, 59, 4131–4137.
- 13 Lv, Z.; Tang, Y.; Dong, S.; Zhou, Q.; Cui, G. Polyurethane-based polymer electrolytes for lithium batteries: Advances and perspectives. Chem. Eng. J. 2022, 430, 132659.
- 14 Xue, Z.; He, D.; Xie, X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218–19253.
- 15 Berthier, C.; Gorecki, W.; Minier, M.; Armand, M. Microscopic investigation of ionic conductivity in alkali metal salts-poly (ethylene oxide) adducts. Solid State Ionics 1983, 11, 91–95.
- 16 Shen, Z.; Zhang, W.; Zhu, G.; Huang, Y.; Feng, Q. Design principles of the anode–electrolyte interface for all solid-state lithium metal batteries. Small Methods 2020, 4, 1900592.
- 17 Zhang, G.; Hong, Y.-l.; Nishiyama, Y.; Bai, S. Accumulation of glassy poly (ethylene oxide) anchored in a covalent organic framework as a solid-state li+ electrolyte. J. Am. Chem. Soc. 2018, 141, 1227–1234.
- 18 Zhao, Y.; Bai, Y.; Liu, A.; Li, W.; An, M.; Bai, Y.; Chen, G. Polymer electrolyte with dual functional groups designed via theoretical calculation for all-solid-state lithium batteries. J. Power Sources 2020, 450, 227614.
- 19 Zheng, Y.; Yao, Y.; Ou, J.; Li, M.; Luo, D.; Dou, H. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures. Chem. Soc. Rev. 2020, 49, 8790–8839.
- 20 Lee, J.; Lin, M.; Leu, C.; Wu, J. Rice husk-derived porous silicon dioxide fillers for enhancing ionic conductivity in a solid-state electrolyte of lithium–sulfur batteries under molecular dynamic calculation. J. Mater. Chem. A 2022, 10, 12928–12937.
- 21 Zhang, Y.; Bao, W.; Li, H. Incorporating highly dispersed alumina in peo-based solid electrolytes by vapor phase infiltration for all-solid-state lithium metal batteries. Mater. Today Energy 2022, 28, 101074.
- 22 Liu, Y.; Zhao, Y.; Lu, W.; Sun, L.; Lin, L.; Zheng, M.; Sun, X. PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries. Nano Energy 2021, 88, 106205.
- 23 Li, Y.; Zhang, L.; Sun, Z. Hexagonal boron nitride induces anion trapping in a polyethylene oxide based solid polymer electrolyte for lithium dendrite inhibition. J. Mater. Chem. A 2020, 8, 9579–9589.
- 24 Gerbaldi, C.; Nair, J.; Kulandainathan, M. Innovative high performing metal organic framework (mof)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A 2014, 2, 9948–9954.
- 25 Lu, G.; Wei, H.; Shen, C. Bifunctional mof doped peo composite electrolyte for long-life cycle solid lithium-ion battery. ACS Appl. Mater. Interfaces 2022, 14, 45476–45483.
- 26 Chen, Z.; Li, J.; Qiu, F. A sulfur-containing polymer-plasticized poly(ethylene oxide)-based electrolyte enables highly effective lithium dendrite suppression. J. Mater. Chem. A 2022, 10, 14849–14856.
- 27 Tong, Y.; Lyu, H.; Xu, Y.; Thapaliya, B.; Li, P. All-solid-state interpenetrating network polymer electrolytes for long cycle life of lithium metal batteries. J. Mater. Chem. A 2018, 6, 14847–14855.
- 28 Zhu, Y.; Cao, J.; Chen, H. High electrochemical stability of a 3d cross-linked network peo@nano-sio2 composite polymer electrolyte for lithium metal batteries. J. Mater. Chem. A 2019, 7, 6832–6839.
- 29 Gohy, J. Chemically anchored liquid-peo based block copolymer electrolytes for solid-state lithium-ion batteries. J. Mater. Chem. A 2016, 2, 11839–11846.
- 30 Huang, L.; Shi, Y.; Wang, S. Gel electrolytes based on an ether- abundant polymeric framework for high-rate and long-cycle-life lithium-ion batteries. J. Mater. Chem. A 2014, 2, 10492–10501.
- 31 Sun, T.; Jin, K.; Wang, W.; Li, W.; Wang, T.; Yang, T. A long-term anti-corrosion and cathodic delamination resistant epoxy coating based on COF grafted go nanofillers. J. Ind. Eng. Chem. 2023, 128, 222–234.
- 32 Zhang, M.; Yuan, M.; Zhao, X. Radiation-induced one-pot synthesis of grafted covalent organic frameworks. Sci. China Chem. 2023, 66, 1781–1787.
- 33 Chen, R.; Qu, W.; Guo, X. The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons. Mater. Horiz. 2016, 3, 487–516.
- 34 Judez, X.; Zhang, H.; Li, C. Lithium bis(fluorosulfonyl)imide/ poly(ethylene oxide) polymer electrolyte for all solid-state li–s cell. J. Phys. Chem. Lett. 2017, 8, 1956–1960.
- 35 Syzdek, J.; Armand, M.; Falkowski, P. Reversed phase composite polymeric electrolytes based on poly(oxyethylene). Chem. Mater. 2011, 23, 1785–1797.
- 36 Wang, C.; Yang, Y.; Liu, X. Suppression of lithium dendrite formation by using lagp-peo (litfsi) composite solid electrolyte and lithium metal anode modified by peo (litfsi) in all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 2017, 9, 13694–13702.
- 37 Zhai, H.; Xu, P.; Ning, M. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 2017, 17, 3182–3187.
- 38 Lu, M.; Shi, P. Electrochemical performance of PEO10Lix-Li2TiO3 composite polymer electrolytes. Chin. J. Chem. 2004, 22, 47–50.
- 39 Chen, J.; Han, S. Peo-based solid-state electrolyte modified by cationic covalent organic frameworks enabling high-performance all-solid-state Li metal and graphite anode batteries. Chem. Eng. J. 2023, 470, 144150.
- 40 Zhao, G.; Mei, Z.; Duan, L. Cof-based single li+ solid electrolyte accelerates the ion diffusion and restrains dendrite growth in quasi-solid- state organic batteries. Carbon Energy 2023, 5, e248.
- 41 Chen, Y.; Li, H.; Tang, M. Capacitive conjugated ladder polymers for fast-charge and -discharge sodium-ion batteries and hybrid supercapacitors. J. Mater. Chem. A 2019, 7, 20891–20898.
- 42 Mao, M.; Luo, C.; Pollard TP. A pyrazine-based polymer for fast- charge batteries. Angew. Chem. Int. Ed. 2019, 58, 17820–17826.
- 43 Peng, C.; Ning, G.-H.; Su, J. Reversible multi-electron redox chemistry of π-conjugated n-containing heteroaromatic molecule-based organic cathodes. Nat. Energy 2017, 2, 17074.
- 44 Wang, J.; Chen, C. S.; Zhang, Y. Hexaazatrinaphthylene-based porous organic polymers as organic cathode materials for lithium-ion batteries. ACS Sustainable Chem. Eng. 2018, 6, 1772–1779.
- 45 Wang, X.; Zhou, Z.; Lin, X. Nanostructured hexaazatrinaphthalene based polymers for advanced energy conversion and storage. Chem. Eng. J. 2022, 427, 130995.
- 46 Wang, X.; Yang, Y.; Lai, C.; Li, R.; Xu, H.; Tan, D. H. S.; Zhang, K.; Yu, W.; Fjeldberg, O.; Lin, M.; Tang, W.; Meng, Y. S.; Loh, K. P. Dense-stacking porous conjugated polymer as reactive-type host for high-performance lithium sulfur batteries. Angew. Chem. Int. Ed. 2021, 60, 11359–11369.
- 47 Wang, Q.; Zhu, M.; Chen, G. High-performance microsized si anodes for lithium-ion batteries: Insights into the polymer configuration conversion mechanism. Adv. Mater. 2022, 34, 2109658.
- 48
Luo, C.; Wang, C. Nitrogen-containing organic electrode materials for Li-ion batteries and beyond. ECS Meeting Abstracts 2019, 2, 542.
10.1149/MA2019-02/6/542 Google Scholar
- 49 Wang, J.; En, J.; Riduan, S. Nitrogen-linked hexaazatrinaphthylene polymer as cathode material in lithium-ion battery. Chem. - Eur. J. 2020, 26, 2581–2585.
- 50 Niu, C.; Luo, W.; Dai, C. High-voltage-tolerant covalent organic framework electrolyte with holistically oriented channels for solid- state lithium metal batteries with nickel-rich cathodes. Angew. Chem. Int. Ed. 2021, 60, 24915–24923.
- 51 Ma, H.; Liu, B.; Li, B. Cationic covalent organic frameworks: A simple platform of anionic exchange for porosity tuning and proton conduction. J. Am. Chem. Soc. 2016, 138, 5897–5903.
- 52 Guo, Z.; Zhang, Y.; Dong, Y. Fast ion transport pathway provided by polyethylene glycol confined in covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 1923–1927.
- 53 Ghelichi, M.; Qazvini, N.; Jafari, S. Conformational, thermal, and ionic conductivity behavior of PEO in PEO/PMMA miscible blend: Investigating the effect of lithium salt. J. Appl. Polym. Sci. 2013, 129, 1868–1874.
- 54 Li, X.; Wang, X.; Shao, D.; Liu, L. Preparation and performance of poly (ethylene oxide)-based composite solid electrolyte for all solid-state lithium batteries. J. Appl. Polym. Sci. 2019, 136, 47498.
- 55 Wu, L.; Hu, J.; Chen, S. Lithium nitrate mediated dynamic formation of solid electrolyte interphase revealed by in situ fourier transform infrared spectroscopy. Electrochim. Acta 2023, 466, 142973.
- 56 Zhao, Z.; Chen, W.; Impeng, S.; Li, M.; Wang, R. Covalent organic framework-based ultrathin crystalline porous film: Manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. J. Mater. Chem. A 2020, 8, 3459–3467.
- 57 Wang, S.; Li, X.; Cheng, T.; Liu, Y.; Li, Q.; Bai, M. Highly conjugated three-dimensional covalent organic frameworks with enhanced li-ion conductivity as solid-state electrolytes for high-performance lithium metal batteries. J. Mater. Chem. A 2022, 10, 8761–8771.
- 58 Yoon, S.; Kim, H.; Jin, H.; Yun, Y. Effects of fluoroethylene carbonate-induced solid-electrolyte-interface layers on carbon-based anode materials for potassium ion batteries. Appl. Surf. Sci. 2021, 547, 149193.
- 59 Yang, L.; Wei, D.; Xu, M.; Yao, Y. Transferring lithium ions in nanochannels: A PEO/Li+ solid polymer electrolyte design. Angew. Chem. Int. Ed. 2014, 53, 3631–3635.