Stereoselective Gridization of Ladder-Type Grids with Four Chiral Centers
Yang Li
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorYueting Pu
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorZheng Zhang
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorFangju Tao
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorXiaoyan Li
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an, Shaanxi, 710072 China
Search for more papers by this authorJingrui Zhang
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorXin Chen
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorYuezheng Gao
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorCorresponding Author
Ying Wei
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Linghai Xie
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023 China
E-mail: [email protected]; [email protected]Search for more papers by this authorYang Li
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorYueting Pu
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorZheng Zhang
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorFangju Tao
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorXiaoyan Li
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an, Shaanxi, 710072 China
Search for more papers by this authorJingrui Zhang
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorXin Chen
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorYuezheng Gao
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorCorresponding Author
Ying Wei
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Linghai Xie
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu, 210023 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
To address the stereoselective synthesis challenge in π-stacked grids with four chiral centers, we utilized coplanar and highly rigid 11,12-dihydroindeno[2,1-a]fluorene-11,12-diol and 2,2'-bithiophene as synthons, employing Friedel-Crafts gridization (FCG). Leveraging the supramolecular interactions of S···S and π···π within the thiophene moiety, along with the steric effect of the 11,12-dihydroindeno[2,1-a]fluorene scaffold, we successfully achieved the exclusive generation of a single isomer of Ladder-type π-stacked grids (LGs-IF) containing six theoretical isomers. By subsequently substituting 2,2'-bithiophene with thiophene/bithiophene derivatives as synthons, we maintained an exceptionally high level of stereoselectivity. This study introduces a novel approach for the stereo-controlled preparation of grids involving multi-chiral centers.
Supporting Information
Filename | Description |
---|---|
cjoc202400502-sup-0001-supinfo.pdfPDF document, 2.6 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Lin, D. Q.; Wei, Y.; Peng, A. Z.; Zhang, H.; Zhong, C. X.; Lu, D.; Zhang, H.; Zheng, X. P.; Yang, L.; Feng, Q. Y.; Xie, L. H.; Huang, W. Stereoselective gridization and polygridization with centrosymmetric molecular packing. Nat. Commun. 2020, 11, 1756.
- 2 Xie, X. M.; Wei, Y.; Lin, D. Q.; Zhong, C. X.; Xie, L. H.; Huang, W. Nanogridarene: A Rising Nanomolecular Integration Platform of Organic Intelligence. Chin. J. Chem. 2020, 38, 103–105.
- 3 Wei, Y.; Du, X.; Huang, W. X.; Fu, M. Y.; Zhang, Z.; Zhong, C. X.; Wang, Y. R.; Ling, H. F.; Xie, L. H.; Huang, W. One-Pot Synthesis of Axially and Centrally Chiral A-type Nanogrids. Chin. J. Chem. 2023, 41, 2969–2974.
- 4 Wei, Y.; Yan, Y. X.; Li, X. Y.; Xie, L. H.; Huang, W. Covalent nanosynthesis of fluorene-based macrocycles and organic nanogrids. Org. Biomol. Chem. 2022, 20, 73–97.
- 5 Zhong, C. X.; Yan, Y.; Peng, Q.; Zhang, Z.; Wang, T.; Chen, X.; Wang, J. C.; Wei, Y.; Yang, T. L.; Xie, L. H. Structure–Property Relationship of Macrocycles in Organic Photoelectric Devices: A Comprehensive Review. Nanomaterials 2023, 13, 1750.
- 6 Yang, L.; Mao, J.; Yin, C. Z.; Ali, M. A.; Wu, X. P.; Dong, C. Y.; Liu, Y. Y.; Wei, Y.; Xie, L. H.; Ran, X. Q.; Huang, W. A novel structure of grid spirofluorene: a new organic semiconductor with low reorganization energy. New J. Chem. 2019, 43, 7790–7796.
- 7 Wei, Y.; Luo, M. C.; Zhang, G. W.; Lei, J. Q.; Xie, L. H.; Huang, W. A convenient one-pot nanosynthesis of a C(sp2)–C(sp3)-linked 3D grid via an ‘A2 + B3’ approach. Org. Biomol. Chem. 2019, 17, 6574–6579.
- 8 Wang, Y. X.; Fu, M. Y.; Zhang, X. F.; Jin, D.; Zhu, S. Y.; Wang, Y. C.; Wu, Z. Y.; Bao, J. M.; Cheng, X. G.; Yang, L.; Xie, L. H. Cubic Nanogrids for Counterbalance Contradiction among Reorganization Energy, Strain Energy, and Wide Bandgap. J. Phys. Chem. Lett. 2022, 13, 4297–4308.
- 9 Feng, Q. Y.; Han, Y. L.; Yu, M. N.; Li, B.; Wei, Y.; Xie, L. H.; Huang, W. A robust and soluble nanopolymer based on molecular grid-based nanomonomer. Chin. J. Polym. Sci. 2017, 35, 87–97.
- 10 Feng, Q. Y.; Xie, S. L.; Tan, K. S.; Zheng, X. J.; Yu, Z. T.; Li, L. J.; Liu, B.; Li, B.; Yu, M. N.; Yu, Y.; Zhang, X. W.; Xie, L. H.; Huang, W. Conjugated Nanopolymer Based on a Nanogrid: Approach toward Stable Polyfluorene-Type Fluorescent Emitter for Blue Polymer Light-Emitting Diodes. ACS Appl. Polym. Mater. 2019, 1, 2441–2449.
- 11 Lin, D. Q.; Li, Y.; Zhang, H.; Zhang, S.; Gao, Y. Z.; Zhai, T. R.; Hu, S.; Sheng, C. X.; Guo, H.; Xu, C. X.; Wei, Y.; Li, S. F.; Han, Y. L.; Feng, Q. Y.; Wang, S. S.; Xie, L. H.; Huang, W. In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films. Research 2023, 6, 0027.
- 12 Li, X. Y.; Lin, D. Q.; Xu, Y. S.; Li, Y.; Zhou, P.; Peng, A. Z.; Wang, H. J.; Wei, Y.; Yan, Y. X.; Shi, W. J.; Wang, S. S.; Xie, L. H. Thermodynamic-Dominated Stereoselective Gridization of Molecular Nanolinkage Based on Fluorenes. Synlett 2022, 33, 988–992.
- 13 Lin, D. Q.; Zhang, W. H.; Yin, H.; Hu, H. X.; Li, Y.; Zhang, H.; Wang, L.; Xie, X. M.; Hu, H. K.; Yan, Y. X.; Ling, H. F.; Liu, J. A.; Qian, Y.; Tang, L.; Wang, Y. X.; Dong, C. Y.; Xie, L. H.; Zhang, H.; Wang, S. S.; Wei, Y.; Guo, X. F.; Lu, D.; Huang, W. Cross-Scale Synthesis of Organic High-k Semiconductors Based on Spiro-Gridized Nanopolymers. Research 2022, 2022, 9820585.
- 14 Lin, D. Q.; Liu, J. A.; Zhang, H.; Qian, Y.; Yang, H.; Liu, L. H.; Ren, A.; Zhao, Y. S.; Yu, X.; Wei, Y.; Hu, S.; Li, L. J.; Li, S. F.; Sheng, C. X.; Zhang, W. H.; Chen, S. F.; Shen, J. P.; Liu, H. F.; Feng, Q. Y.; Wang, S. S.; Xie, L. H.; Huang, W. Gridization-Driven Mesoscale Self-Assembly of Conjugated Nanopolymers into Luminescence-Anisotropic Photonic Crystals. Adv. Mater. 2022, 34, 2109399.
- 15 Wei, Y.; Feng, Q. Y.; Liu, H.; Wang, X. L.; Lin, D. Q.; Xie, S. L.; Yi, M. D.; Xie, L. H.; Huang, W. Organic Synthesis of Ancient Windmill-Like Window Nanogrid at Molecular Scale. Eur. J. Org. Chem. 2018, 2018, 7009–7016.
- 16 Wei, Y.; Li, Y.; Lin, D. Q.; Jin, D.; Du, X.; Zhong, C. X.; Zhou, P.; Sun, Y.; Xie, L. H.; Huang, W. Spiro-based diamond-type nanogrids (DGs) via two ways: ‘A1B1’/‘A2 + B2’ type gridization of vertical spiro-based fluorenol synthons. Org. Biomol. Chem. 2021, 19, 10408–10416.
- 17 Sun, S. X.; Ou, C. J.; Lin, D. Q.; Zuo, Z. Y.; Yan, Y.; Wei, Y.; Liu, Y. Y.; Xie, L. H.; Huang, W. Organic nanosynthesis of diarylfluorene-based ladder-type gridarene isomers via intramolecular A1-B1 type Friedel- Crafts gridization. Tetrahedron 2018, 74, 5833–5838.
- 18 Moran, A.; Hamilton, A.; Bo, C.; Melchiorre, P. A Mechanistic Rationale for the 9-Amino(9-deoxy)epi Cinchona Alkaloids Catalyzed Asymmetric Reactions via Iminium Ion Activation of Enones. J. Am. Chem. Soc. 2013, 135, 9091–9098.
- 19 Houk, K. N.; Paddonrow, M. N.; Rondan, N. G.; Wu, Y. D.; Brown, F. K.; Spellmeyer, D. C.; Metz, J. T.; Li, Y.; Loncharich, R. J. Theory and Modeling of Stereoselective Organic Reactions. Science 1986, 231, 1108–1117.
- 20 Hoffmann, R.; Woodward, R. B. Orbital Symmetry Control of Chemical Reactions: The tendency to maintain bonding governs the complex motions of molecules in the course of reaction. Science 1970, 167, 825–831.
- 21 Xie, L. H.; Yin, C. R.; Lai, W. Y.; Fan, Q. L.; Huang, W. Polyfluorene-based semiconductors combined with various periodic table elements for organic electronics. Prog. Polym. Sci. 2012, 37, 1192–1264.
- 22 Tomoda, S.; Senju, T.; Kawamura, M.; Ikeda, T. Origin of π-Facial Stereoselectivity in Nucleophilic Additions. Application of the Exterior Frontier Orbital Extension Model to Imines and Iminium Ions. J. Org. Chem. 1999, 64, 5396–5400.
- 23 Liu, S. B.; Rong, C. Y.; Lu, T. Electronic forces as descriptors of nucleophilic and electrophilic regioselectivity and stereoselectivity. Phys. Chem. Chem. Phys. 2017, 19, 1496–1503.
- 24 Chen, Q. S.; Trinh, M. T.; Paley, D. W.; Preefer, M. B.; Zhu, H. M.; Fowler, B. S.; Zhu, X. Y.; Steigerwald, M. L.; Nuckolls, C. Strain-Induced Stereoselective Formation of Blue-Emitting Cyclostilbenes. J. Am. Chem. Soc. 2015, 137, 12282–12288.
- 25 Shibata, T.; Miyoshi, M.; Uchiyama, T.; Endo, K.; Miura, N.; Monde, K. Enantioselective synthesis of tripodal cyclophanes and pyridinophanes by intramolecular [2+2+2] cycloaddition. Tetrahedron 2012, 68, 2679–2686.
- 26 Wang, Y. L.; Xu, K. D.; Li, B.; Cui, L.; Li, J.; Jia, X. S.; Zhao, H.; Fang, J. H.; Li, C. J. Efficient Separation of cis- and trans-1,2-Dichloroethene Isomers by Adaptive Biphen[3]arene Crystals. Angew. Chem. Int. Ed. 2019, 58, 10281–10284.
- 27 Boinski, T.; Szumna, A. A facile, moisture-insensitive method for synthesis of pillar[5]arenes—the solvent templation by halogen bonds. Tetrahedron 2012, 68, 9419–9422.
- 28 Wei, Y.; Zheng, X. P.; Lin, D. Q.; Yuan, H. X.; Yin, Z. P.; Yang, L.; Yu, Y.; Wang, S. S.; Xie, L. H.; Huang, W. Superelectrophilic-Initiated C–H Functionalization at the β-Position of Thiophenes: A One-Pot Synthesis of trans-Stereospecific Saddle-Shaped Cyclic Compounds. J. Org. Chem. 2019, 84, 10701–10709.
- 29 Wang, S. S.; Liu, Y. R.; Yu, X.; Zhou, Y.; Zhong, T. T.; Li, Y. T.; Xie, L. H.; Huang, W. Supramolecular Non-Helical One-Dimensional Channels and Microtubes Assembled from Enantiomers of Difluorenol. Angew. Chem. Int. Ed. 2021, 60, 3979–3983.
- 30 Yu, M. N.; Lin, J. Y.; Li, Y. X.; Soleimaninejad, H.; Ou, C. J.; Bai, L. B.; Liu, B.; Liu, W.; Wei, Q.; Bo, Y. F.; Smith, T. A.; Dunstan, D. E.; Ghiggino, K. P.; Xie, L. H.; Xu, C. X.; Bradley, D. D. C.; Huang, W. Emission Enhanced and Stabilized by Stereoisomeric Strategy in Hierarchical Uniform Supramolecular Framework. Chem 2019, 5, 2470–2483.
- 31 Wei, Y.; Gao, Y. Z.; Lin, D. Q.; Li, Y.; Tao, F. J.; Pu, Y. T.; Ma, S. W.; Ren, B. Y.; Xie, L. H. Superelectrophilic-initiated Friedel–Crafts reaction of diazafluorenols: Synthesis of multi-diazafluorene units (MDAFs). Tetrahedron Lett. 2023, 132, 154816.
- 32 Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.
- 33 Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.