Rational Designing MxSy@C (M=Ni, Co, Zn, Cu, Mn) Composites with Controlled Polysuifides Shuttling Behaviors towards Advanced Stable Room Temperature Na-S Batteries†
Wei Huang
State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Center of Analysis and Characterization, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 China
These authors contributed equally.
Search for more papers by this authorYumeng Chen
Guizhou Provincial Key Laboratory for Cathode Materials of New Energy Battery, Tongren, Guizhou, 554300 China
These authors contributed equally.
Search for more papers by this authorJing Chen
College of Material and Chemical Engineering, Tongren University, Tongren, Guizhou, 554300 China
Search for more papers by this authorWei Shi
College of Material and Chemical Engineering, Tongren University, Tongren, Guizhou, 554300 China
Search for more papers by this authorCorresponding Author
Guangliang Xua
State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Center of Analysis and Characterization, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Yingchang Yang
College of Material and Chemical Engineering, Tongren University, Tongren, Guizhou, 554300 China
E-mail: [email protected], [email protected]Search for more papers by this authorWei Huang
State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Center of Analysis and Characterization, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 China
These authors contributed equally.
Search for more papers by this authorYumeng Chen
Guizhou Provincial Key Laboratory for Cathode Materials of New Energy Battery, Tongren, Guizhou, 554300 China
These authors contributed equally.
Search for more papers by this authorJing Chen
College of Material and Chemical Engineering, Tongren University, Tongren, Guizhou, 554300 China
Search for more papers by this authorWei Shi
College of Material and Chemical Engineering, Tongren University, Tongren, Guizhou, 554300 China
Search for more papers by this authorCorresponding Author
Guangliang Xua
State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Center of Analysis and Characterization, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Yingchang Yang
College of Material and Chemical Engineering, Tongren University, Tongren, Guizhou, 554300 China
E-mail: [email protected], [email protected]Search for more papers by this author†Dedicated to the Special Issue of Batteries.
Comprehensive Summary
Room-temperature sodium-sulfur (RT-Na/S) batteries display attractive potential in large-scale energy-storage, but their practical application was still restricted by the serious dissolution of polysulfides. Herein, supported by the constructing of interface engineering, the metal sulfide-carbon nanocomposite can be prepared with considerable electrochemical properties. Utilizing the double-helix structure of carrageenan-metal hydrogels as precursors, in-situ metal sulfide (MxSy) nanostructure/3D carbon aerogels (3D CAs) can be successfully constructed. Importantly, with the assistance of the vulcanization process, 3D carbon architecture was maintained in the composites and acted as a skeleton to optimize their structural stability. As the cathode of RT-Na/S batteries, ZnS/S@C and NiS2/S@C delivered an excellent cycling stability and rate performance (179.8 mAh·g−1 at 20 A·g−1 after 10000 cycling for ZnS/S@C, 220.3 mAh·g−1 at 10 A·g−1 after 3000 cycling for NiS2/S@C). The detailed investigation of mechanism revealed that the powerful adsorption for Na2S4 originated from 3D metal sulfide-carbon structure. The well-designed architecture of sulfide-carbon composites servers as an electrocatalyst to alleviate the shuttle effect of polysulfides, resulting in the long-term electrochemical stability. Given this, the work is expected to provide promising insights for designing advanced cathode materials for RT-Na/S batteries.
Supporting Information
Filename | Description |
---|---|
cjoc202400249-sup-0001-supinfo.pdfPDF document, 2.9 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Lin, L.; Zhang, C.; Huang, Y.; Zhuang, Y.; Fan, M.; Lin, J.; Wang, L.; Xie, Q.; Peng, D. Challenge and Strategies in Room Temperature Sodium-Sulfur Batteries: A Comparison with Lithium-Sulfur Batteries. Small 2022, 18, 2107368.
- 2 Li, Z.; Wang, C.; Ling, F.; Wang, L.; Bai, R.; Shao, Y.; Chen, Q.; Yuan, H.; Yu, Y.; Tan, Y. Room-Temperature Sodium-Sulfur Batteries: Rules for Catalyst Selection and Electrode Design. Adv. Mater. 2022, 34, 2204214.
- 3 Zhang, Z.; Wang, Z.; Zhang, L.; Liu, D.; Yu, C.; Yan, X.; Xie, J.; Huang, J. Unraveling the Conversion Evolution on Solid-State Na-SeS2 Battery via In Situ TEM. Adv. Sci. 2022, 9, 2200744.
- 4 Yan, Z.; Zhao, L.; Wang, Y.; Zhu, Z.; Chou, S. The Future for Room-Temperature Sodium-Sulfur Batteries: From Persisting Issues to Promising Solutions and Practical Applications. Adv. Funct. Mater. 2022, 32, 2205622.
- 5 Huang, X. L.; Zhang, X.; Zhou, L.; Guo, Z.; Liu, H.; Dou, S. X.; Wang, Z. Orthorhombic Nb2O5 Decorated Carbon Nanoreactors Enable Bidirectionally Regulated Redox Behaviors in Room-Temperature Na-S Batteries. Adv. Sci. 2023, 10, 2206558.
- 6 Ye, X.; Li, Z.; Sun, H.; Wu, M.; An, Z.; Pang, Y.; Yang, J.; Zheng, S. Incorporating TiO2 Nanoparticles into the Multichannels of Electrospun Carbon Fibers to Increase the Adsorption of Polysulfides in Room Temperature Sodium-Sulfur Batteries. New Carbon Mater. 2022, 37, 1116–1122.
- 7 Wang, Y.; Huang, X. L.; Liu, H.; Qiu, W.; Chi, F.; Li, C.; Zhang, S.; Liu, H.; Dou, S. X.; Wang, Z. M. Nanostructure Engineering Strategies of Cathode Materials for Room-Temperature Na-S Batteries. ACS Nano 2022, 16, 5103–5130.
- 8 Zhao, S.; Li, C.; Cui, Z.; Zhang, J.; Hu, W.; Ma, R.; Li, C. M. Biomass-Derived Micro-Mesoporous Carbon with Oxygen Functional Groups for High-Rate Na-S Batteries at Room Temperature. Adv. Energy Mater. 2023, 13, 2302490.
- 9 Ma, Q.; Zou, H.; He, H.; Li, Y.; Fang, Z. Enhanced Conversion Kinetics by Constructing Boron and Nitrogen Co-Doped Porous Carbon with Sulfurophilic and Sodiophilic Sites in Room-Temperature Sodium-Sulfur Batteries. Chem. Eng. J. 2023, 474, 145954.
- 10 Wu, C.; Lei, Y.; Simonelli, L.; Tonti, D.; Black, A. P.; Lü, X.; Lai, W.; Cai, X.; Wang, Y.; Gu, Q.; Chou, S.; Liu, H.; Wang, G.; Dou, S. Continuous Carbon Channels Enable Full Na-Ion Accessibility for Superior Room-Temperature Na-S Batteries. Adv. Mater. 2022, 34, 2108363.
- 11 Zhu, J.; Zeng, L.; Song, Y.; Peng, F.; Wang, Y.; He, T.; Deng, L.; Zhang, P. High Performance Sulfur/Carbon Cathode for Na-S Battery Enabled by Electrocatalytic Effect of Sn-Doped In2S3. J. Colloid Interface Sci. 2023, 647, 546–553.
- 12 Ma, C.; Wang, X.; Lan, J.; Zhang, J.; Song, K.; Chen, J.; Ge, J.; Chen, W. Dynamic Multistage Coupling of FeS2/S Enables Ultrahigh Reversible Na-S Batteries. Adv. Funct. Mater. 2023, 33, 2211821.
- 13 Saroha, R.; Heo, J.; Li, Y.; Angulakshmi, N.; Lee, Y.; Cho, K.; Ahn, H.; Ahn, J. V2O3-Decorated Carbon Nanofibers as A Robust Interlayer for Long-Lived, High-Performance, Room-Temperature Sodium-Sulfur Batteries. Chem. Eng. J. 2022, 431, 134205.
- 14 Li, D.; Yang, D.; Yang, X.; Wang, Y.; Guo, Z.; Xia, Y.; Sun, S.; Guo, S. Double-Helix Structure in Carrageenan-Metal Hydrogels: A General Approach to Porous Metal Sulfides/Carbon Aerogels with Excellent Sodium-Ion Storage. Angew. Chem. Int. Ed. 2016, 55, 15925–15928.
- 15 Hou, T.; Liu, B.; Sun, X.; Fan, A.; Xu, Z.; Cai, S.; Zheng, C.; Yu, G.; Tricoli, A. Covalent Coupling-Stabilized Transition-Metal Sulfide/Carbon Nanotube Composites for Lithium/Sodium-Ion Batteries. ACS Nano 2021, 15, 6735–6746.
- 16 Song, Z.; Gan, W.; Chen, Y.; Chang, Q.; Lu, Y.; Zhang, W. Construction of Hierarchical NiS@C/rGO Heterostructures for Enhanced Sodium Storage. Chem. Eng. J. 2022, 435, 134633.
- 17 Yan, Z.; Liang, Y.; Xiao, J.; Lai, W.; Wang, W.; Xia, Q.; Wang, Y.; Gu, Q.; Lu, H.; Chou, S.; Liu, Y.; Liu, H.; Dou, S. X. A High-Kinetics Sulfur Cathode with a Highly Efficient Mechanism for Superior Room-Temperature Na-S Batteries. Adv. Mater. 2020, 32, 1906700.
- 18 Yan, D.; Von Lim, Y.; Wang, G.; Shang, Y.; Li, X. L.; Fang, D.; Pam, M. E.; Yang, S. A.; Wang, Y.; Shi, Y.; Yang, H. Unlocking Rapid and Robust Sodium Storage Performance of Zinc-Based Sulfide via Indium Incorporation. ACS Nano 2021, 15, 8507–8516.
- 19 Zhang, L.; Zhao, W.; Yuan, S.; Yang, Y.; Ge, P.; Sun, W.; Ji, X. Tailoring MSx Quantum Dots (M = Co, Ni, Cu, Zn) for Advanced Energy Storage Materials with Strong Interfacial Engineering. Small 2022, 18, 2106593.
- 20 Ni, J.; Liu, Y.; Zhu, S. Unconventional Designs for Functional Sodium-Sulfur Batteries. Energy Environ. Mater. 2023, 6, e12589.
- 21 He, S.; Huang, J.; Li, J.; Cao, L.; Guo, L.; Luo, X.; Guo, P.; Kajiyoshi, K. Dual Carbon Composited with Co9S8 through C-S Bond as A High Performance Binder-Free Anode for Sodium-Ion Batteries. Appl. Surf. Sci. 2022, 582, 152406.
- 22
Yin, B.; Cao, X.; Pan, A.; Luo, Z.; Selvakumaran, D.; Lin, J.; Tang, Y.; Liang, S.; Cao, G. Encapsulation of CoSx Nanocrystals into N/S Co-Doped Honeycomb-Like 3D Porous Carbon for High-Performance Lithium Storage. Adv. Sci. 2018, 5, 800829.
10.1002/advs.201800829 Google Scholar
- 23 Hu, P.; Xiao, F.; Wu, Y.; Yang, X.; Li, N.; Wang, H.; Jia, J. Covalent Encapsulation of Sulfur in A Graphene/N-doped Carbon Host for Enhanced Sodium-Sulfur Batteries. Chem. Eng. J. 2022, 443, 136257.
- 24 Ma, J.; Gao, L.; Li, S.; Zeng, Z.; Zhang, L.; Xie, J. Dual Play of Chitin-Derived N-Doped Carbon Nanosheets Enabling High-Performance Na-SeS2 Half/Full Cells. Batteries Supercaps 2020, 3, 165–173.
- 25 Zhang, S.; Wang, G.; Wang, B.; Wang, J.; Bai, J.; Wang, H. 3D Carbon Nanotube Network Bridged Hetero-Structured Ni-Fe-S Nanocubes toward High-Performance Lithium, Sodium, and Potassium Storage. Adv. Funct. Mater. 2020, 30, 2001592.
- 26 Yao, X.; Cheng, H.; Jiang, Z.; Han, Q.; Wang, Y.; Wang, H. Heterostructured CoS2/NiS2 Nanoparticles Encapsulated in Bamboo-Like Carbon Nanotubes as a High Performance Anode for Sodium Ion Batteries. New J. Chem. 2020, 44, 10404–10409.
- 27 He, C.; Wei, Y.; Wang, Z.; Wang, J.; Yuen, R. K. Catalytic Chemistry Inspired Hollow Carbon Nanofibers Loaded with NiS/Ni as High-Performance and Safe Li+ Reservoir. J. Colloid Interface Sci. 2024, 664, 156–167.
- 28 Wang, J.; Zhang, D.; Zhang, Y.; Cai, W.; Yao, C.; Hu, Y.; Hu, W. Construction of Multifunctional Boron Nitride Nanosheet towards Reducing Toxic Volatiles (CO and HCN) Generation and Fire Hazard of Thermoplastic Polyurethane. J. Hazard. 2019, 362, 482–494.
- 29 Wang, J.; Ma, C.; Mu, X.; Cai, W.; Liu, L.; Zhou, X.; Hu, W.; Hu, Y. Construction of Multifunctional MoSe2 Hybrid Towards the Simultaneous Improvements in Fire Safety and Mechanical Property of Polymer. J. Hazard. 2018, 352, 36–46.
- 30 Xu, X.; Li, F.; Zhang, D.; Liu, Z.; Zuo, S.; Zeng, Z.; Liu, J. Self-Acrifice Template Construction of Uniform Yolk-Shell ZnS@C for Superior Alkali-Ion Storage. Adv. Sci. 2022, 9, 2200247.
- 31 Cao, D.; Kang, W.; Wang, W.; Sun, K.; Wang, Y.; Ma, P.; Sun, D. Okra-Like Fe7S8/C@ZnS/N-C@C with Core-Double-Shelled Structures as Robust and High-Rate Sodium Anode. Small 2020, 16, 1907641.
- 32 Wang, Y.; Kang, W.; Cao, D.; Fan, X.; Yang, H.; Yang, Z.; Sun, D. Yolk-shell ZnS@NC@MoS2 Nanoboxes with Enhanced Sodium Storage Capability. Appl. Surf. Sci. 2022, 574, 151715.
- 33 Wang, L.; Li, D.; Li, Q.; Pan, Q.; Zhang, M.; Zhang, L.; Zheng, F.; Huang, Y.; Wang, H.; Li, Q. Ultrafine ZnS Nanoparticles Embedded in N-doped Carbon as Advanced Anode Materials for Lithium Ion Batteries and Sodium Ion Batteries. J. Alloys Compd. 2022, 910, 164783.
- 34 Cai, J.; Yang, F.; Zhu, J.; Si, L.; Shi, X.; Shao, L.; Sun, Z.; Hu, Z.; Shen, P. Hierarchical Hollow Mixed Metal Sulfides Microspheres Assembly from NiS Nanoparticles Anchored on MoS2 Nanosheets and Coated with N-Doped Carbon for Enhanced Sodium Storage. J. Alloys Compd. 2022, 895, 162594.
- 35 Wei, Y.; Bai, W.; Yu, S.; Wang, Z.; Wang, J. Engineering Hierarchical Structure of Multi-Phase Metal Sulfides with Doped Carbon Protector Towards Superb Energy Storage. Appl. Surf. Sci. 2022, 600, 154155.
- 36 Chen, Z.; Wu, R.; Liu, M.; Wang, H.; Xu, H.; Guo, Y.; Song, Y.; Fang, F.; Xia, G.; Sun, D. General Synthesis of Dual Carbon-Confined Metal Sulfides Quantum Dots toward High-Performance Anodes for Sodium-Ion Batteries. Adv. Funct. Mater. 2017, 27, 1702046.
- 37 Xie, H.; Chen, M.; Wu, L. Hierarchical Nanostructured NiS/MoS2/C Composite Hollow Spheres for High Performance Sodium-Ion Storage Performance. ACS Appl. Mater. 2019, 11, 41222–41228.
- 38 Zhang, S.; Wang, R.; Cao, R.; Fang, F. Nano-Size NiS Particles Anchored on Nitrogen-Doped Reduced Graphene Oxide for Superior Sodium Storage. J. Alloys Compd. 2021, 888, 161316.
- 39 Zhang, S.; Wang, R.; Cao, R.; Fang, F. Hydrothermal Synthesis of Flower-Like NiS-Ni3S4/Stereotaxically Constructed Graphene Composite for Ultrahigh-Rate Sodium Storage. Mater Lett. 2019, 236, 618–621.
- 40 Wen, Z.; Gao, L.; Yue, L.; Xiao-Yan, W.; Liu, Q.; Luo, Y.; Li, T. S.; Shi, X.; Asiri, A. M. Constructing a Hollow Microflower-Like ZnS/CuS@C Heterojunction as an Effective Ion-Transport Booster for an Ultra-Stable and High-Rate Sodium Storage Anode. J. Mater. Chem. A 2021, 9, 6402–6412.
- 41 Yu, S.; Cheng, C.; Li, K.; Wang, J.; Wang, Z.; Zhou, H.; Wang, W.; Zhang, Y.; Yan, Q. Fire-Safe Epoxy Composite Realized by MXenes Based Nanostructure with Vertically Arrayed MOFs Derived from Interfacial Assembly Strategy. Chem. Eng. J. 2023, 465, 143039.
- 42 Zhou, H.; Zhou, Y.; Cao, Y.; Wang, Z.; Wang, J.; Zhang, Y.; Pan, W. Hollow LDH Cage Covering with Ultra-Thin MXenes Veil: Integrated Micro-Nano Structure Upon Heat Release Suppression and Toxic Effluents Elimination for Polymer. Chem. Eng. J. 2023, 461, 142035.
- 43 Wang, J.; Wei, Y.; Wang, Z.; He, X.; Wang, C.; Lin, H.; Deng, Y. MOFs-Derived Self-Sacrificing Template Strategy to Double-Shelled Metal Oxides Nanocages as Hierarchical Interfacial Catalyst for Suppressing Smoke and Toxic Gases Releases of Epoxy Resin. Chem. Eng. J. 2022, 432, 134328.
- 44 Wang, J.; Li, K.; Chen, C.; Nie, S.; Cai, W.; Zhang, Q.; Zhao, F.; Yuen, R. K. MXenes-Based Nanojunction with Defective MoSe2 Nano Catalyst Towards Reducing the Thermal Runaway Hazard of Polymer. Compos. Part A-Appl. S. 2024, 179, 108004.
- 45 Chen, Z.; Huang, J.; Cui, Y.; Fu, R. Precisely Tailored Morphology of Polyimine for Simple Synthesis of Metal Sulfide/Carbon Flower-Like Superstructures. Carbon 2022, 190, 395–401.
- 46 Wang, J.; Cao, Y.; Wang, Z.; Zhao, Y.; He, C.; Zhao, F.; Han, C.; Yu, S. Superior and Safer Lithium Sulfur Batteries Realized by Robust Polysulfides-Retarding Dam with High Flame Retardance. J. Energy Chem. 2024, 89, 471–486.
- 47 Li, H.; He, Y.; Dai, Y.; Ren, Y.; Gao, T.; Zhou, G. Bimetallic SnS2/NiS2@S-rGO Nanocomposite with Hierarchical Flower-Like Architecture for Superior High Rate and Ultra-Stable Half/Full Sodium-ion Batteries. Chem. Eng. J. 2022, 427, 131784.
- 48 Liang, Y.; Ma, C.; Wang, Y.; Yu, H.; Shen, X.; Yao, S.; Li, T.; Qin, S. Cubic Pyrite Nickel Sulfide Nanospheres Decorated with Ketjen Black@Sulfur Composite for Promoting Polysulfides Redox kinetics in Lithium-Sulfur Batteries. J. Alloys Compd. 2022, 907, 164396.
- 49 Zhang, N.; Yang, Y.; Feng, X.; Yu, S.; Seok, J.; Muller, D. A.; Abruña, H. D. Sulfur Encapsulation by MOF-Derived CoS2 Embedded in Carbon Hosts for High-Performance Li-S Batteries. J. Mater. Chem. A 2019, 7, 21128–21139.
- 50 Yuan, S.; Zhao, W.; Zeng, Z.; Dong, Y.; Yang, Y.; Sun, W.; Ge, P. Engineering Hierarchical Sb2S3/N-C From Natural Minerals with Stable Phase-Change towards All-Climate Energy Storage. J. Mater. Chem. A 2022, 10, 5488–5504.
- 51 Pampel, J.; Dörfler, S.; Althues, H.; Kaskel, S. Designing Room Temperature Sodium Sulfur Batteries with Long Cycle-Life at Pouch Cell Level. Energy Stor. Mater. 2019, 21, 41–49.
- 52 Song, L.; Jin, X.; Li, Y.; Zhuang, Q.; Shen, Y.; Zhang, L.; An, L.; Liu, Y.; Jin, X.; Li, J.; Cui, T.; Liu, B. A First-Principles Study on Crystal Structures and Metallization of Sodium-Rich Sulfides Under High Pressure. J. Phys. Condens. 2022, 34, 264003.
- 53 Kandula, S.; Youn, B. S.; Cho, J.; Lim, H.; Son, J. G. FeS2@N-C Nanorattles Encapsulated in N/S Dual-doped Graphene/Carbon Nanotube Network Composites for High Performance and High Rate Capability Anodes of Sodium-ion Batteries. Chem. Eng. J. 2022, 439, 135678.
- 54 Doğrusöz, M.; Devic, T.; Ahsen, A. Ş.; Demir-Cakan, R. A Gallic Acid Based Metal Organic Framework Derived NiS/C Anode for Sodium Ion Batteries. Sustainable Energy Fuels 2021, 5, 3363–3372.
- 55 Fan, S.; Huang, S.; Chen, Y.; Shang, Y.; Wang, Y.; Kong, D.; Pam, M. E.; Shi, L.; Lim, Y. W.; Shi, Y.; Yang, H. Y. Construction of Complex NiS Multi-Shelled Hollow Structures with Enhanced Sodium Storage. Energy Stor. Mater. 2019, 23, 17–24.
- 56 Chen, S.; Li, G.; Yang, M.; Xiong, J.; Akter, S.; Mi, L.; Li, Y. Nanotube Assembled Coral-Like ZnS@N, S Co-Doped Carbon: A Sodium-Ion Batteries Anode Material with Outstanding Stability and Rate Performance. Appl. Surf. Sci. 2021, 535, 147748.