“Mutually Doped” Conjugated Polyelectrolyte-Polyoxometalate Complex as Hole Transporting Material for Efficient Organic Solar Cells
Yanhe Xiang
State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work.
Search for more papers by this authorLuxin Feng
State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work.
Search for more papers by this authorHe Wang
State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorQingyang Li
State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorZhiguo Zhang
State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorLongjia Yan
School of Pharmaceutical Sciences, Guizhou University, Guiyan, Guizhou, 550025 China
Search for more papers by this authorCorresponding Author
Bowei Xu
State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing, 100029 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Jianhui Hou
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
E-mail: [email protected]; [email protected]Search for more papers by this authorYanhe Xiang
State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work.
Search for more papers by this authorLuxin Feng
State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work.
Search for more papers by this authorHe Wang
State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorQingyang Li
State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorZhiguo Zhang
State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorLongjia Yan
School of Pharmaceutical Sciences, Guizhou University, Guiyan, Guizhou, 550025 China
Search for more papers by this authorCorresponding Author
Bowei Xu
State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing, 100029 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Jianhui Hou
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Compared to electron transporting layer materials, the species and numbers of hole transporting layer (HTL) materials for organic solar cells (OSCs) are rare. The development of HTL materials with excellent hole collection ability and non-corrosive nature is a long-standing issue in the field of OSCs. Herein, we designed and synthesized a series of conjugated polyelectrolytes (CPEs) with continuously varied energy levels toward HTL materials for efficient OSCs. Through a “mutual doping” treatment, we obtained a CPE composite PCT-F:POM with a WF of 5.48 eV and a conductivity of 1.56 х 10–3 S/m, meaning that a good hole collection ability can be expected for PCT-F:POM. The OSC modified by PCT-F:POM showed a high PCE of 18.0%, which was superior to the reference device with PEDOT:PSS. Moreover, the PCT-F:POM-based OSC could maintain 91% of the initial PCE value after storage of 20 d, meaning that the long-term stability of OSCs is improved by incorporating the PCT-F:POM HTL. In addition, PCT-F:POM possesses good compatibility with large-area processing technique; i.e., a PCT-F:POM HTL was processed by the blade-coating method for fabricating 1 cm2 OSC, and a PCE of 15.1% could be achieved. The results suggest the promising perspective of PCT-F:POM in practical applications.
Supporting Information
Filename | Description |
---|---|
cjoc202400192-sup-0001-Supinfo.pdfPDF document, 947.1 KB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Heeger, A. J. 25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation. 25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation. Adv. Mater. 2014, 26, 10–28.
- 2 Elumalai, N. K.; Uddin, A. Open circuit voltage of organic solar cells: an in-depth review. Energy Environ. Sci. 2016, 9, 391–410.
- 3 Lin, Y.; Zhan, X. Non-fullerene acceptors for organic photovoltaics: an emerging horizon. Mater. Horiz. 2014, 1, 470–488.
- 4 Kim, J.; Lee, Y. K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing. Science 2007, 317, 222–225.
- 5 Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270, 1789–1791.
- 6 Li, B.; Zhang, X.; Wu, Z.; Yang, J.; Liu, B.; Liao, Q.; Wang, J.; Feng, K.; Chen, R.; Woo, H. Y.; Ye, F.; Niu, L.; Guo, X.; Sun, H. Over 16% efficiency all-polymer solar cells by sequential deposition. Sci. China Chem. 2022, 65, 1157–1163.
- 7 He, Z.; Wu, H.; Cao, Y. Recent Advances in Polymer Solar Cells: Realization of High Device Performance by Incorporating Water/Alcohol- Soluble Conjugated Polymers as Electrode Buffer Layer. Adv. Mater. 2014, 26, 1006–1024.
- 8 Chueh, C. C.; Li, C. Z.; Jen, A. K. Y. Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci. 2015, 8, 1160–1189.
- 9 Lu, S.; Ouyang, D.; Choy, W. C. H. Recent progress of interconnecting layer for tandem organic solar cells. Sci. China Chem. 2017, 60, 460–471.
- 10 Bai, Q.; Sun, H.; Guo, X.; Niu, L. Advances in Green-Solvent- Processable All-Polymer Solar Cells. Chin. J. Polym. Sci. 2022, 40, 846–860.
- 11 Jiang, Y.; Dong, X.; Sun, L.; Liu, T.; Qin, F.; Xie, C.; Jiang, P.; Hu, L.; Lu, X.; Zhou, X.; Meng, W.; Li, N.; Brabec, C. J.; Zhou, Y. An alcohol- dispersed conducting polymer complex for fully printable organic solar cells with improved stability. Nat. Energy 2022, 7, 352–359.
- 12 Ma, R.; Zeng, M.; Li, Y.; Liu, T.; Luo, Z.; Xu, Y.; Li, P.; Zheng, N.; Li, J.; Li, Y.; Chen, R.; Hou, J.; Huang, F.; Yan, H. Rational Anode Engineering Enables Progresses for Different Types of Organic Solar Cells. Adv. Energy Mater. 2021, 11, 2100492.
- 13 Ivanko, I.; Mahun, A.; Kobera, L.; Černochová, Z.; Pavlova, E.; Toman, P.; Pientka, Z.; Štěpánek, P.; Tomšík, E. Synergy between the Assembly of Individual PEDOT Chains and Their Interaction with Light. Macromolecules 2021, 54, 10321–10330.
- 14 Fan, Z.; Du, D. H.; Yu, Z. M.; Li, P. C.; Xia, Y. J.; Ouyang, J. Y. Significant Enhancement in the Thermoelectric Properties of PEDOT:PSS Films through a Treatment with Organic Solutions of Inorganic Salts. ACS Appl. Mater. Interfaces 2016, 8, 23204–23211.
- 15 Wang, J. T.; Zhang, J.; Meng, B.; Zhang, B. H.; Xie, Z. Y.; Wang, L. X. Facile Preparation of Molybdenum Bronzes as an Efficient Hole Extraction Layer in Organic Photovoltaics. ACS Appl. Mater. Interfaces 2015, 7, 13590–13596.
- 16 Dupont, S. R.; Novoa, F.; Voroshazi, E.; Dauskardt, R. H. Decohesion Kinetics of PEDOT:PSS Conducting Polymer Films. Adv. Funct. Mater. 2014, 24, 1325–1332.
- 17 Voroshazi, E.; Verreet, B.; Buri, A.; Müller, R.; Di Nuzzo, D.; Heremans, P. Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells. Org. Electron. 2011, 12, 736–744.
- 18 Chen, Y.-H.; Chen, C.-W.; Huang, Z.-Y.; Wong, K.-T.; Lin, L.-Y.; Lin, F.; Lin, H.-W. Vacuum-deposited interconnection layers for tandem solar cells. Org. Electron. 2014, 15, 1828–1835.
- 19 Bai, Q.; Liang, Q.; Li, H.; Sun, H.; Guo, X.; Niu, L. Recent progress in low-cost noncovalently fused-ring electron acceptors for organic solar cells. Aggregate 2022, 3, 2692.
- 20 Lin, Y.; Zhang, Y.; Zhang, J.; Marcinskas, M.; Malinauskas, T.; Magomedov, A.; Nugraha, M. I.; Kaltsas, D.; Naphade, D. R.; Harrison, G. T.; El-Labban, A.; Barlow, S.; De Wolf, S.; Wang, E.; McCulloch, I.; Tsetseris, L.; Getautis, V.; Marder, S. R.; Anthopoulos, T. D. 18.9% Efficient Organic Solar Cells Based on n-Doped Bulk-Heterojunction and Halogen-Substituted Self-Assembled Monolayers as Hole Extracting Interlayers. Adv. Energy Mater. 2022, 12, 2202503.
- 21 Lin, Y.; Firdaus, Y.; Isikgor, F. H.; Nugraha, M. I.; Yengel, E.; Harrison, G. T.; Hallani, R.; El-Labban, A.; Faber, H.; Ma, C.; Zheng, X.; Subbiah, A. S.; Howells, C. T.; Bakr, O. M.; McCulloch, I.; Wolf, S. D.; Tsetseris, L.; Anthopoulos, T. D. Self-Assembled Monolayer Enables Hole Transport Layer-Free Organic Solar Cells with 18% Efficiency and Improved Operational Stability. ACS Energy Lett. 2020, 5, 2935–2944.
- 22 Chen, J. J.; Vila-Nadal, L.; Sole-Daura, A.; Chisholm, G.; Minato, T.; Busche, C.; Zhao, T; Kandasamy, B.; Ganin, A. Y.; Smith, R. M.; Colliard, I.; Carbo, J. J.; Poblet, J. M.; Nyman, M.; Cronin, L. Effective Storage of Electrons in Water by the Formation of Highly Reduced Polyoxometalate Clusters. Effective Storage of Electrons in Water by the Formation of Highly Reduced Polyoxometalate Clusters. J. Am. Chem. Soc. 2022, 144, 8951–8960.
- 23 Fang, Y.; Zhang, Q.; Li, F.; Xu, L. Exploring Inorganic Hole Collection Materials from Mixed-Metal Dawson-Type Polyoxometalates for Efficient Organic Photovoltaic Devices. Sol. RRL 2022, 6, 2100827.
- 24 Xu, H.; Zou, H.; Zhou, D.; Zhang, L.; Liao, X.; Chen, L.; Chen, Y. Thickness-Insensitive Anode Interface Layer for High-Efficiency Organic Solar Cells. ACS Appl Mater Interfaces 2021, 13, 39844–39853.
- 25 Lu, L.; Liao, Q.; Zu, Y.; Xu, Y.; Xu, B.; Hou, J. Significant Effect of Fluorination on Simultaneously Improving Work Function and Transparency of Anode Interlayer for Organic Solar Cells. Adv. Energy Mater. 2019, 9, 1803826.
- 26 Wu, F.; Li, P.; Sun, K.; Zhou, Y.; Chen, W.; Fu, J.; Li, M.; Lu, S.; Wei, D.; Tang, X.; Zang, Z.; Sun, L.; Liu, X.; Ouyang, J. Conductivity Enhancement of PEDOT:PSS via Addition of Chloroplatinic Acid and Its Mechanism. Adv. Electron. Mater. 2017, 3, 1700047.
- 27 Tan, J.-K.; Png, R.-Q.; Zhao, C.; Ho, P. K. H. Ohmic transition at contacts key to maximizing fill factor and performance of organic solar cells. Nat. Commun. 2018, 9, 3269.
- 28 Mai, C. K.; Zhou, H.; Zhang, Y.; Henson, Z. B.; Nguyen, T-Q.; Heeger, A. J.; Bazan, G. C. Facile Doping of Anionic Narrow-Band-Gap Conjugated Polyelectrolytes During Dialysis. Angew. Chem. Int. Ed. 2013, 52, 12874–12878.
- 29 Cao, D. X.; Leifert, D.; Brus, V. V.; Wong, M. S.; Phan, H.; Yurash, B.; Koch, N.; Bazan, G. C.; Nguyen, T.-Q. The importance of sulfonate to the self-doping mechanism of the water-soluble conjugated polyelectrolyte PCPDTBT-SO3K. Mater. Chem. Front. 2020, 4, 3556–3566.
- 30 Lee, B. H.; Lee, J. H.; Jeong, S. Y.; Park, S. B.; Lee, S. H.; Lee, K. Broad Work-Function Tunability of p-Type Conjugated Polyelectrolytes for Efficient Organic Solar Cells. Adv. Energy Mater. 2015, 5, 1401653.
- 31 Zhou, H. Q.; Zhang, Y.; Mai, C. K.; Collins, S. D.; Bazan, G. C.; Nguyen, T.-Q.; Heeger, A. J. Polymer Homo-Tandem Solar Cells with Best Efficiency of 11.3%. Adv. Mater. 2015, 27, 1767–1773.
- 32 Zhou, H.; Zhang, Y.; Mai, C. K.; Collins, S. D.; Nguyen, T-Q.; Bazan, G. C.; Heeger, A. J. Conductive Conjugated Polyelectrolyte as Hole- Transporting Layer for Organic Bulk Heterojunction Solar Cells. Adv. Mater. 2014, 26, 780–785.
- 33 Yang, Y.; Wang, J.; Bi, P.; Kang, Q.; Zheng, Z.; Xu, B.; Hou, J. Universal Hole Transporting Material via Mutual Doping for Conventional, Inverted, and Blade-Coated Large-Area Organic Solar Cells. Chem. Mater. 2022, 34, 6312–6322.
- 34 Yang, Y.; Xu, B.; Hou, J. Reducing Depletion Region Width at Electrode Interface via a Hole-transport Layer for Over 18% Efficiency in Organic Solar Cells. Small 2023, 20, 2306668.
- 35 Kang, Q.; Liao, Q.; Xu, Y.; Xu, L.; Zu, Y.; Li, S.; Xu, B.; Hou, J. p-Doped Conducting Polyelectrolyte as an Anode Interlayer Enables High Efficiency for 1 cm-2 Printed Organic Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 20205–20213.
- 36 Cui, Y.; Jia, G.; Zhu, J.; Kang, Q.; Yao, H.; Lu, L.; Xu, B.; Hou, J. The Critical Role of Anode Work Function in Non-Fullerene Organic Solar Cells Unveiled by Counterion-Size-Controlled Self-Doping Conjugated Polymers. Chem. Mater. 2018, 30, 1078–1084.
- 37 Wang, H.; Liu, S.; Yang, Y.; Li, H.; Wei, Z.; Cheng, Y.; Hou, J.; Xu, B. Reducing the Depletion Region Width at the Anode Interface via a Highly Doped Conjugated Polyelectrolyte Composite for Efficient. ACS Appl. Mater. Interfaces 2024, 16, 3744–3754.
- 38 Wang, H.; Yang, Y.; Zhang, Y.; Wang, S.; Tan, Z. a.; Yan, S.; Wang, L.; Hou, J.; Xu, B. p—π Conjugated Polyelectrolytes Toward Universal Electrode Interlayer Materials for Diverse Optoelectronic Devices. Adv. Funct. Mater. 2023, 33, 2213914.
- 39 Tengstedt, C.; Osikowicz, W.; Salaneck, W. R.; Parker, I. D.; Hsu, C.-H.; Fahlman, M. Fermi-level pinning at conjugated polymer interfaces. Appl. Phys. Lett. 2006, 88, 053502.
- 40 Leong, W. L.; Cowan, S. R.; Heeger, A. J. Differential Resistance Analysis of Charge Carrier Losses in Organic Bulk Heterojunction Solar Cells: Observing the Transition from Bimolecular to Trap-Assisted Recombination and Quantifying the Order of Recombination. Adv. Energy Mater. 2011, 1, 517–522.
- 41 Zhang, K.; Jiang, Z.; Qiao, J.; Lu, P.; Qin, C.; Yin, H.; Du, X.; Qin, W.; Hao, X. Dredging photocarrier trapping pathways via “charge bridge” driven exciton–phonon decoupling enables efficient and photothermal stable quaternary organic solar cells. Energy Environ. Sci. 2023, 16, 3350–3362.
- 42 Zhang, K.; Du, X.; Qiao, J.; Hu, H.; Zhang, W.; Wang, L.; Gao, M.; Yin, H.; Qin, W.; Hao, X. Triggering favorable energy landscape: a general approach towards highly efficient and photostable organic solar cells. Energy Environ. Sci. 2022, 15, 5261–5273.