Heavier Group 14 Congeners of Metalla-isobenzenes: Access to Metalla-isosilabenzene and Metalla-isogermabenzene by One-Pot Reactions
Jinyu Zhao
Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorYapeng Cai
Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorXin Yang
Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorCorresponding Author
Hong Zhang
Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005 China
E-mail: [email protected]Search for more papers by this authorJinyu Zhao
Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorYapeng Cai
Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorXin Yang
Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorCorresponding Author
Hong Zhang
Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005 China
E-mail: [email protected]Search for more papers by this authorComprehensive Summary
Metalla-isosilabenzenes and metalla-isogermabenzenes have been successfully synthesized by the formal [5+1]-cycloaddition of diethynylsilane or diethynylgermane with simple metal complexes. This is the first example of a heavier Group 14 metalla-isobenzene isomer bearing a cumulative double bond motif within a metallacycle. These novel complexes were fully characterized by NMR spectroscopy and single-crystal X-ray diffraction analysis. The stabilization of the cyclic metal-vinylidene complexes has been analyzed using density functional theory (DFT) calculations. When the metalla-isosilabenzenes bearing Si—H bond were treated with the trityl salt as a hydride scavenger, the formation of silylium cation was observed spectroscopically. Both of metalla-isosilabenzenes and metalla-isogermabenzenes can readily undergo migratory insertion reactions to furnish siloles or germoles.
Supporting Information
Filename | Description |
---|---|
cjoc202400016-sup-0001-Supinfo.pdfPDF document, 4.8 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1(a) Lee, V. Y.; Sekiguchi, A. Cyclic polyenes of heavy group 14 elements: new generation ligands for transition-metal complexes. Chem. Soc. Rev. 2008, 37, 1652−1665; (b) Delouche, T.; Hissler, M.; Bouit, P.-A. Polycyclic aromatic hydrocarbons containing heavy group 14 elements: From synthetic challenges to optoelectronic devices. Coord. Chem. Rev. 2022, 464, 214553−214566.
- 2(a) Wakita, K.; Tokitoh, N.; Okazaki, R.; Nagase, S. Synthesis and properties of an overcrowded silabenzene stable at ambient temperature. Angew. Chem. Int. Ed. 2000, 39, 634−636;
10.1002/(SICI)1521-3773(20000204)39:3<634::AID-ANIE634>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar(b) Nakata, N.; Takeda, N.; Tokitoh, N. Synthesis and Properties of the First Stable Germabenzene. J. Am. Chem. Soc. 2002, 124, 6914−6920.
- 3 Ota, K.; Kinjo, R. Heavier element-containing aromatics of [4n+2]-electron systems. Chem. Soc. Rev. 2021, 50, 10594−10673.
- 4(a) Musch, P. W.; Scheidel, D.; Engels, B. Comprehensive Model for the Electronic Structures of 1,2,4-Cyclohexatriene and Related Compounds. J. Phys. Chem. A. 2003, 107, 11223−11230; (b) Kassaee, M. Z.; Shakib, F. A.; Momeni, M. R.; Ghambarian, M.; Musavi, S. M. Silabenzene through divalent precursors at theoretical levels. Monatsh. Chem. 2009, 140, 33−38.
- 5 Elliott, G. P.; Roper, W. R.; Waters, J. M. Metallacyclohexatrienes or ‘metallabenzenes.’ Synthesis of osmabenzene derivatives and X-ray crystal structure of [Os(CSCHCHCHCH)(CO)(PPh3)2]. J. Chem. Soc., Chem. Commun. 1982, 811−813.
- 6 Thorn, D. L.; Hoffmann, R. Delocalization in metallocycles. Nouv. J. Chim. 1979, 3, 39−45.
- 7(a) Landorf, C. W.; Haley, M. M. Recent Advances in Metallabenzene Chemistry. Angew. Chem. Int. Ed. 2006, 45, 3914−3936; (b) Chen, J.; Jia, G. Recent development in the chemistry of transition metal-containing metallabenzenes and metallabenzynes. Coord. Chem. Rev. 2013, 257, 2491−2521; (c) Vivancos, Á.; Paneque, M.; Poveda, M. L.; Álvarez, E. Building a Parent Iridabenzene Structure from Acetylene and Dichloromethane on an Iridium Center. Angew. Chem. Int. Ed. 2013, 52, 10068−10071; (d) Fernández, I.; Frenking, G.; Merino, G. Aromaticity of metallabenzenes and related compounds. Chem. Soc. Rev. 2015, 44, 6452−6463; (e) Chen, D.; Hua, Y.; Xia, H. Metallaaromatic Chemistry: History and Development. Chem. Rev. 2020, 120, 12994−13086; (f) Zhang, Y.; Yu, C.; Huang, Z.; Zhang, W.-X.; Ye, S.; Wei, J.; Xi, Z. Metalla-aromatics: planar, nonplanar, and spiro. Acc. Chem. Res. 2021, 54, 2323−2333.
- 8(a) Werner, H.; Weinand, R.; Knaup, W.; Peters, K.; Von Schnering, H. G. (Arene) osmium complexes containing alkynyl, vinyl, vinylidene, and thio-and selenoketene units as ligands: A series of organometallic compounds built up from 1-alkynes. Organometallics 1991, 10, 3967−3977; (b) Puerta, M. C.; Valerga, P. Ruthenium and osmium vinylidene complexes and some related compounds. Coord. Chem. Rev. 1999, 193, 977−1025; (c) Esteruelas, M. A.; López, A. M.; Oliván, M. Osmium–carbon double bonds: formation and reactions. Coord. Chem. Rev. 2007, 251, 795−840; (d) Barrio, P.; Esteruelas, M. A.; Oñate, E. Preparation and Characterization of an Isometallabenzene with the Structure of a 1,2,4-Cyclohexatriene. J. Am. Chem. Soc. 2004, 126, 1946−1947; (e) Zhao, Q.; Gong, L.; Xu, C.; Zhu, J.; He, X.; Xia, H. Stable iso-osmabenzenes from a formal [3+3] cycloaddition reaction of metal vinylidene with alkynols. Angew. Chem. Int. Ed. 2011, 50, 1354−1358.
- 9(a) Jia, G. Progress in the chemistry of metallabenzynes. Acc. Chem. Res. 2004, 37, 479−486;
(b) Wright, L. J. Metallabenzenes: An Expert View, Wiley, Hoboken, 2017.
10.1002/9781119068075 Google Scholar
- 10 Zhu, C.; Li, S.; Luo, M.; Zhou, X.; Niu, Y.; Lin, M.; Zhu, J.; Cao, Z.; Lu, X.; Wen, T.; Xie, Z.; Schleyer, P. v. R.; Xia, H. Stabilization of anti-aromatic and strained five-membered rings with a transition metal. Nat. Chem. 2013, 5, 698−703.
- 11 Wang, T.; Zhu, J.; Han, F.; Zhou, C.; Chen, H.; Zhang, H.; Xia, H. Synthesis of Five-Membered Osmacycloallenes and Conversion into Six-Membered Osmacycloallenes. Angew. Chem. Int. Ed. 2013, 52, 13361−13364.
- 12(a) Xia, H.; He, G.; Zhang, H.; Wen, T. B.; Sung, H. H. Y.; Williams, I. D.; Jia, G. Osmabenzenes from the Reactions of HC=CCH(OH)C=CH with OsX2(PPh3)3 (X = Cl, Br). J. Am. Chem. Soc. 2004, 126, 6862−6863; (b) Zhang, H.; Xia, H.; He, G.; Wen, T. B.; Gong, L.; Jia, G. Synthesis and characterization of stable ruthenabenzenes. Angew. Chem. Int. Ed. 2006, 45, 2920−2923.
- 13 Chen, Y.; Li, J.; Zhao, Y.; Zhang, L.; Tan, G.; Zhu, H.; Roesky, H. W. Stable radical cation and dication of a 1,4-disilabenzene. J. Am. Chem. Soc. 2021, 143, 2212−2216.
- 14Calculations of LiCl and naked Li+ were computed using implicit solvent model (for details, see SI).
- 15(a) Riesinger, C.; Balázs, G.; Bodensteiner, M.; Scheer, M. Stabilization of Pentaphospholes as η5-Coordinating Ligands. Angew. Chem. Int. Ed. 2020, 59, 23879−23884; (b) Klare, H. F. T.; Albers, L.; Süsse, L.; Keess, S.; Müller, T.; Oestreich, M. Silylium Ions: From Elusive Reactive Intermediates to Potent Catalysts. Chem. Rev. 2021, 121, 5889−5985.
- 16 Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 2005, 105, 3842−3888.
- 17 Geuenich, D.; Hess, K.; Köhler, F.; Herges, R. Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. Chem. Rev. 2005, 105, 3758−3772.
- 18 Szczepanik, D. W.; Andrzejak, M.; Dyduch, K.; Żak, E.; Makowski, M.; Mazur, G.; Mrozek, J. A uniform approach to the description of multicenter bonding. Phys. Chem. Chem. Phys. 2014, 16, 20514−20523.
- 19(a) Szczepanik, D. W.; Solὰ, M. Electron delocalization in planar metallacycles: Hückel or Möbius aromatic? ChemistryOpen 2019, 8, 219−227; (b) Chen, D.; Szczepanik, D. W.; Zhu, J.; Solὰ, M. Probing the Origin of Adaptive Aromaticity in 16-Valence-Electron Metallapentalenes. Chem. Eur. J. 2020, 26, 12964−12971; (c) Aysin, R. R.; Bukalov, S. S. Aromaticity of 5-and 7-Membered Metallacyclocumulenes of Group 4. Organometallics 2021, 40, 938−947; (d) Xiong, Y.; Chen, D.; Yao, S.; Zhu, J.; Ruzicka, A.; Driess, M. New types of Ge2 and Ge4 assemblies stabilized by a carbanionic dicarborandiyl-silylene ligand. J. Am. Chem. Soc. 2021, 143, 6229−6237; (e) Steffenfauseweh, H.; Rottschäfer, D.; Vishnevskiy, Y. V.; Neumann, B.; Stammler, H.-G.; Szczepanik, D. W.; Ghadwal, R. S. Isolation of an Annulated 1,4-Distibabenzene Diradicaloid. Angew. Chem. Int. Ed. 2023, 62, e202216003.
- 20(a) Gusel’nikov, L. E.; Nametkin, N. S. Formation and properties of unstable intermediates containing multiple pπ-pπ bonded Group 4B metals. Chem. Rev. 1979, 79, 529−577; (b) Zhao, L.; Pan, S.; Holzmann, N.; Schwerdtfeger, P.; Frenking, G. Chemical bonding and bonding models of main-group compounds. Chem. Rev. 2019, 119, 8781−8845.
- 21(a) Roy, S.; Rosenthal, U.; Jemmis, E. D. Metallacyclocumulenes: a theoretical perspective on the structure, bonding, and reactivity. Acc. Chem. Res. 2014, 47, 2917−2930; (b) Leenders, S. H. A. M.; Gramage-Doria, R.; de Bruin, B.; Reek, J. N. H. Transition metal catalysis in confined spaces. Chem. Soc. Rev. 2015, 44, 433−448; (c) Rosenthal, U. Equilibria and mesomerism/valence tautomerism of group 4 metallocene complexes. Chem. Soc. Rev. 2020, 49, 2119−2139.
- 22(a) Zhu, C.; Zhou, X.; Xing, H.; An, K.; Zhu, J.; Xia, H. σ-Aromaticity in an Unsaturated Ring: Osmapentalene Derivatives Containing a Metallacyclopropene Unit. Angew. Chem. Int. Ed. 2015, 54, 3102−3106; (b) Zhu, C.; Yang, Y.; Luo, M.; Yang, C.; Wu, J.; Chen, L.; Liu, G.; Wen, T.; Zhu, J.; Xia, H. Stabilizing Two Classical Antiaromatic Frameworks: Demonstration of Photoacoustic Imaging and the Photothermal Effect in Metalla-aromatics. Angew. Chem. Int. Ed. 2015, 54, 6181−6185; (c) Batuecas, M.; Castro-Rodrigo, R.; Esteruelas, M. A.; García-Yebra, C.; López, A. M.; Oñate, E. Aromatic Osmacyclopropenefuran Bicycles and Their Relevance for the Metal-Mediated Hydration of Functionalized Allenes. Angew. Chem. Int. Ed. 2016, 55, 13749−13753; (d) Luo, M.; Long, L.; Zhang, H.; Yang, Y.; Hua, Y.; Liu, G.; Lin, Z.; Xia, H. Reactions of isocyanides with metal carbyne complexes: Isolation and characterization of metallacyclopropenimine intermediates. J. Am. Chem. Soc. 2017, 139, 1822–1825; (e) Lv, Z.-J.; Huang, Z.; Shen, J.; Zhang, W.-X.; Xi, Z. Well-defined scandacyclopropenes: synthesis, structure, and reactivity. J. Am. Chem. Soc. 2019, 141, 20547−20555; (f) He, Z.; Liu, L.; de Zwart, F. J.; Xue, X.; Ehlers, A. W.; Yan, K.; Demeshko, S.; van der Vlugt, J. I.; de Bruin, B.; Krogman, J. Reactivity of a Unique Si(I)–Si(I)-Based η2-Bis (silylene) Iron Complex. Inorg. Chem. 2022, 61, 11725−11733.
- 23 Mayer, I. Bond order and valence indices: A personal account. J. Comput. Chem. 2006, 28, 204−221.
- 24(a) Hung, W. Y.; Zhu, J.; Wen, T. B.; Yu, K. P.; Sung, H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G. Osmabenzenes from the reactions of a dicationic osmabenzyne complex. J. Am. Chem. Soc. 2006, 128, 13742−13752; (b) Hung, W. Y.; Liu, B.; Shou, W.; Wen, T. B.; Shi, C.; Sung, H. H.-Y.; Williams, I. D.; Lin, Z.; Jia, G. Electrophilic substitution reactions of metallabenzynes. J. Am. Chem. Soc. 2011, 133, 18350−18360.
- 25(a) Henson, Z. B.; Müllen, K.; Bazan, G. C. Design strategies for organic semiconductors beyond the molecular formula. Nat. Chem. 2012, 4, 699−704; (b) Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Solution-processed small-molecule solar cells with 6.7% efficiency. Nat. Mater. 2012, 11, 44−48; (c) Han, Z.; Yang Z.; Sun, H.; Xu, Y.; Ma, X.; Shan, D.; Chen, J.; Huo, S.; Zhang, Z.; Du, P.; Lu, X. Electrochemiluminescence platforms based on small water-insoluble organic molecules for ultrasensitive aqueous-phase detection. Angew. Chem. Int. Ed. 2019, 58, 5915−5919; (d) He, Y.; Dai, C.; Wang, D.; Zhu, J.; Tan, G. Phosphine-stabilized germylidenylpnictinidenes as synthetic equivalents of heavier nitrile and isocyanide in cycloaddition reactions with alkynes. J. Am. Chem. Soc. 2022, 144, 5126−5135.
- 26 Horáček, M.; Štěpnička, P.; Gyepes, R.; Císařová, I.; Kubišta, J.; Lukešová, L.; Meunier, P.; Mach, K. Nonclassical Bonding in Titanasilacyclohexadiene Compounds Resulting from Highly Methyl-Substituted Titanocene−Bis (trimethylsilyl) ethyne Complexes and Bis ((trimethylsilyl) ethynyl) silanes. Organometallics 2005, 24, 6094–6103.
- 27
Wrackmeyer, B. A New Route to Silacyclopentadiene Derivatives. J. Chem. Soc., Chem. Commun. 1986, 397−399.
10.1039/c39860000397 Google Scholar