Hole-Transporting Materials with Rational Combination of Pyridine and Dibenzo[a,c]phenazine as Electron Acceptor for Dopant-Free Perovskite Solar Cells†
Weidong Ling
Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, Hubei, 430072 China
‡ These authors contributed equally to this work.
† Dedicated to the 130th Anniversary of Wuhan University.
Search for more papers by this authorFei Wu
Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, Faculty of Materials & Energy, Southwest University, Chongqing, 400715 China
‡ These authors contributed equally to this work.
† Dedicated to the 130th Anniversary of Wuhan University.
Search for more papers by this authorWentao Yuan
Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorCorresponding Author
Linna Zhu
Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, Faculty of Materials & Energy, Southwest University, Chongqing, 400715 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorCorresponding Author
Qianqian Li
Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, Hubei, 430072 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorCorresponding Author
Zhen Li
Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, Hubei, 430072 China
TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorWeidong Ling
Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, Hubei, 430072 China
‡ These authors contributed equally to this work.
† Dedicated to the 130th Anniversary of Wuhan University.
Search for more papers by this authorFei Wu
Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, Faculty of Materials & Energy, Southwest University, Chongqing, 400715 China
‡ These authors contributed equally to this work.
† Dedicated to the 130th Anniversary of Wuhan University.
Search for more papers by this authorWentao Yuan
Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorCorresponding Author
Linna Zhu
Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, Faculty of Materials & Energy, Southwest University, Chongqing, 400715 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorCorresponding Author
Qianqian Li
Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, Hubei, 430072 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorCorresponding Author
Zhen Li
Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, Hubei, 430072 China
TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorComprehensive Summary
Perovskite solar cells (PSCs) have been proven to be a promising option for photovoltaic conversion. With the aim to achieve efficient and stable PSCs, it is essential to explore dopant-free hole-transporting materials (HTMs) with high hole mobility. Herein, HTMs bearing electron donor (D)-electron acceptor (A)-electron donor (D) structures have been constructed with strong intramolecular charge transfer (ICT) effect, based on rational combination of dibenzo[a,c]phenazine and pyridine as electronic acceptors and anchoring groups to perovskite layer. Accordingly, high hole mobility (7.31 × 10–5 cm2·V–1·s–1) and photoelectric conversion efficiency (20.45%) have been achieved by dopant-free DPyP-based PSC. It afforded an efficient way to design HTMs with high hole mobility by adjustment of molecular configurations and electronic property of conjugated systems.
Supporting Information
Filename | Description |
---|---|
cjoc202300658-sup-0001-Supinfo.pdfPDF document, 4.6 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Fu, J.; Fong, P. W. K.; Liu, H.; Huang, C.-S.; Lu, X.; Lu, S.; Abdelsamie, M.; Kodalle, T.; Sutter-Fella, C. M.; Yang, Y.; Li, G. 19.31% Binary Organic Solar Cell and Low Non-radiative Recombination Enabled by Nonmonotonic Intermediate State Transition. Nat. Commun. 2023, 14, 1760.
- 2 Liu, F.; Wu, F.; Ling, W.; Tu, Z.; Zhang, J.; Wei, Z.; Zhu, L.; Li, Q.; Li, Z. Facile-effective Hole-transporting Materials Based on Dibenzo[a,c]carbazole: The Key Role of Linkage Position to Photovoltaic Performance of Perovskite Solar Cells. ACS Energy Lett. 2019, 4, 2514–2521.
- 3 Aftab, S.; Iqbal, Z.; Hussin, S.; Kabir, F.; Al-Kahtani, A. A.; Hegazy, H. H. Quantum Junction Solar Cells: Development and Prospects. Adv. Funct. Mater. 2023, 33, 2303449.
- 4 Lim, E.L.; Yang, J.; Wei, Z. Inorganic CsPbI2Br Halide Perovskites: from Fundamentals to Solar Cell Optimizations. Energy Environ. Sci. 2023, 16, 862–888.
- 5 You, S.; Zeng, H.; Liu, Y.; Han, B.; Li, M.; Li, L.; Zheng, X., Guo, R.; Luo, L.; Li, Z.; Zhang, C.; Liu, R.; Zhao, Y.; Zhang, S.; Peng, Q.; Wang, T.; Chen, Q.; Eickemeyer, F. T.; Carlsen, B.; Zakeeruddin, S. M.; Mai, L.; Rong, Y.; Grätzel, M.; Li, X. Radical Polymeric p-Doping and Grain Modulation for Stable, Efficient Perovskite Solar Modules. Science 2023, 379, 288–294.
- 6 Li, C.; Wang, X.; Bi, E.; Jiang, F.; Park, S. M.; Li, Y.; Chen, L.; Wang, Z.; Zeng, L.; Chen, H.; Liu, Y.; Grice, C. R.; Abudulimu, A.; Chung, J.; Xian, Y.; Zhu, T.; Lai, H.; Chen, B.; Ellingson, R. J.; Fu, F.; Ginger, D. S.; Song, Z.; Sargent, E. H.; Yan, Y. Rational design of Lewis Base Molecules for Stable and Efficient Inverted Perovskite Solar Cells. Science 2023, 379, 690–694.
- 7 Feng, J.; Wang, X.; Li, J.; Liang, H.; Wen, W.; Alvianto, E.; Qiu, C.-W.; Su, R.; Hou, Y. Resonant Perovskite Solar Cells with Extended Band Edge. Nat. Commun. 2023, 14, 5392.
- 8 Kojima, A.; Tenshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.
- 9 NREL Efficiency Chart. (accessed: October 2023).
- 10 Urieta-Mora, J.; García-Benito, I.; Molina-Ontoria, A.; Martin, N. Hole Transporting Materials for Perovskite Solar Cells: A Chemical Approach. Chem. Soc. Rev. 2018, 47, 8541–8571.
- 11 Murugan, P.; Hu, T.; Hu, X.; Chen, Y. Advancements in Organic Small Molecule Hole-transporting Materials for Perovskite Solar Cells: Past and Future. J. Mater. Chem. A 2022, 10, 5044–5081.
- 12 Liu, F.; Li, Q.; Li, Z. Hole-Transporting Materials for Perovskite Solar Cells. Asian J. Org. Chem. 2018, 7, 2182–2200.
- 13 Zhang, H.; Zhao, C.; Yao, J.; Choy, W. C. H. Dopant-free NiOx Nanocrystals: A Low-cost and Stable Hole Transport Material for Commercializing Perovskite Optoelectronics. Angew. Chem. Int. Ed. 2023, 62, e202219307.
- 14 Yu, Z.; Sun, L. Inorganic Hole-transporting Materials for Perovskite Solar Cells. Small Methods 2018, 2, 1700280.
- 15 Jia, J.; Wu, F.; Zhu, L.; Yang, C. Unfused Electronic Acceptor-based Polymers as Interfacial Materials for Efficient Inverted Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 33328–33334.
- 16 Liu, Z.; Wang, Y.; Sun, Z.; Zhou, C.; Chen, Z.; Zhu, Y.; Jia, X.; Zhang, J.; Ye, M.; Yuan, N. Exploration of the Effect of Fluoridation on the Doping-free Linear Dibenzothiophene-based Hole-transport Material Applied for Inverted Perovskite Solar Cells. ACS Appl. Energy Mater. 2023, 6, 1274–1282.
- 17 Yan, P.; Yang, D.; Wang, H.; Yang, S.; Ge, Z. Recent Advances in Dopant-free Organic Hole-transporting Materials for Efficient, Stable and Low-cost Perovskite Solar Cells. Energy Environ. Sci. 2022, 15, 3630–3669.
- 18 Kim, G.; Min, H.; Lee, K. S.; Lee, D. Y.; Yoon, S. M.; Seok, S. I. Impact of Strain Relaxation on Performance of α-formamidinium Lead Iodide Perovskite Solar Cells. Science 2020, 370, 108–112.
- 19 Pham, H. D.; Yang, T. C.-J.; Jain, S. M.; Wilson, G. J.; Sonar, P. Development of Dopant-free Organic Hole Transporting Materials for Perovskite Solar Cells. Adv. Energy Mater. 2020, 10, 1903326.
- 20 Ren, G.; Han, W.; Deng, Y.; Wu, W.; Li, Z.; Guo, J.; Bao, H.; Liu, C.; Guo, W. Strategies of Modifying Spiro-OMeTAD Materials for Perovskite Solar Cells: A Review. J. Mater. Chem. A 2021, 9, 4589–4625.
- 21 Cheng, Q.; Chen, H.; Yang, F.; Chen, Z.; Chen, W.; Yang, H.; Shen, Y.; Ou, X.-M.; Wu, Y.; Li, Y.; Li, Y. Molecular Self-Assembly Regulated Dopant-Free Hole Transport Materials for Efficient and Stable n-i-p Perovskite Solar Cells and Scalable Modules. Angew. Chem. Int. Ed. 2022, 61, e202210613.
- 22 Zhang, C.; Liao, Q.; Chen, J.; Li, B.; Xu, C.; Wei, K.; Du, G.; Wang, Y.; Liu, D.; Deng, J.; Luo, Z.; Pang, S.; Yang, Y.; Li, J.; Yang, L.; Guo, X.; Zhang, J. Thermally Crosslinked Hole Conductor Enables Stable Inverted Perovskite Solar Cells with 23.9% Efficiency. Adv. Mater. 2023, 35, 2209422.
- 23 Ling, W.; Liu, F.; Li, Q.; Li, Z. The Crucial Roles of the Configurations and Electronic Properties of Organic Hole-transporting Molecules to the Photovoltaic Performance of Perovskite Solar Cells. J. Mater. Chem. A 2021, 9, 18148–18163.
- 24 Ren, Y.; Wei, Y.; Li, T.; Mu, Y.; Zhang, M., Yuan, Y.; Zhang, J.; Wang, P. Spirobifluorene with an Asymmetric Fluorenylcarbazolamine Electron-donor as the Hole Transport Material Increases Thermostability and Efficiency of Perovskite Solar Cells. Energy Environ. Sci. 2023, 16, 3534–3542.
- 25 Shen, C.; Wu, Y.; Zhang, H.; Li, E.; Zhang, W.; Xu, X.; Wu, W.; Tian, H.; Zhu, W.-H. Semi-locked Tetrathienylethene as a Building Block for Hole-transporting Materials: Toward Efficient and Stable Perovskite Solar Cells. Angew. Chem. Int. Ed. 2019, 58, 3784–3789.
- 26 Zhang, X.; Zhou, Z.; Ma, S.; Wu, G.; Liu, X.; Mateen, M.; Ghadari, R.; Wu, Y.; Ding, Y.; Cai, M.; Dai, S. Fused Tetraphenylethylene-triphenylamine as an Efficient Hole Transporting Material in Perovskite Solar Cells. Chem. Commun. 2020, 56, 3159–3162.
- 27 Robinson, B. H.; Dalton, L. R. Monte Carlo Statistical Mechanical Simulations of the Competition of Intermolecular Electrostatic and Poling-field Interactions in Defining Macroscopic Electro-optic Activity for Organic Chromophore/Polymer Materials. J. Phys. Chem. A 2000, 104, 4785–4795.
- 28 Wang, Y.; Chen, W.; Wang, L.; Tu, B.; Chen, T.; Liu, B.; Yang, K.; Koh, C. W.; Zhang, X.; Sun, H.; Chen, G.; Feng, X.; Woo, H. Y.; Djurišić, A. B.; He, Z.; Guo, X. Dopant-free Small-molecule Hole-transporting Material for Inverted Perovskite Solar Cells with Efficiency Exceeding 21%. Adv. Mater. 2019, 31, 1902781.
- 29 Sun, X.; Xue, Q.; Zhu, Z.; Xiao, Q.; Jiang, K.; Yip, H.-L.; Yan, H.; Li, Z. Fluoranthene-based Dopant-free Hole Transporting Materials for Efficient Perovskite Solar Cells. Chem. Sci. 2018, 9, 2698–2704.
- 30 Wu, F.; Ji, Y.; Zhong, C.; Liu, Y.; Tian, L.; Zhu, L. Fluorine-substituted Benzothiadiazole-based Hole Transport Materials for Highly Efficient Planar Perovskite Solar Cells with a FF Exceeding 80%. Chem. Commun. 2017, 53, 8719–8722.
- 31 Li, Z.; Zhu, Z.; Chueh, C.-C.; Jo, S. B.; Luo, J.; Jang, S.-H.; Jen, A. K.-Y. Rational Design of Dipolar Chromophore as an Efficient Dopant-free Hole-transporting Material for Perovskite Solar Cells. J. Am. Chem. Soc. 2016, 138, 11833–11839.
- 32 Zhang, H.; Wu, Y.; Zhang, W.; Li, E.; Shen, C.; Jiang, H.; Tian, H.; Zhu, W.-H. Low Cost and Stable Quinoxaline-based Hole-transporting Materials with a D–A–D Molecular Configuration for Efficient Perovskite Solar Cells. Chem. Sci. 2018, 9, 5919–5928.
- 33 Guo, H.; Zhang, H.; Shen, C.; Zhang, D.; Liu, S.; Wu, Y.; Zhu, W.-H. A Coplanar π-extended Quinoxaline Based Hole-transporting Material Enabling over 21% Efficiency for Dopant-free Perovskite Solar Cells. Angew. Chem. Int. Ed. 2021, 60, 2674–2679.
- 34 Shi, J.; Chen, J.; Chai, Z.; Wang, H.; Tang, R.; Fan, K.; Wu, M.; Han, H.; Qin, J.; Peng, T.; Li, Q.; Li, Z. High Performance Organic Sensitizers Based on 11,12-bis(hexyloxy)dibenzo[a,c]phenazine for Dye-sensitized Solar Cells. J. Mater. Chem. 2012, 22, 18830–18838.
- 35 Guo, K.; Wu, M.; Yang, S.; Wang, Z.; Li, J.; Liang, X.; Zhang, F.; Liu, Z.; Wang, Z. Introduction of Fluorine into Spiro[fluorene-9,9’-xanthene]- based Hole Transport Material to Obtain Sensitive-dopant-free, High Efficient and Stable Perovskite Solar Cells. Sol. RRL 2019, 3, 1800352.
- 36 Yu, X.; Li, Z.; Sun, X.; Zhong, C.; Zhu, Z.; Li, Z.; Jen, A. K.-Y. Dopant-free Dicyanofluoranthene-based Hole Transporting Material with Low Cost Enables Efficient Flexible Perovskite Solar Cells. Nano Energy 2021, 82, 105701.
- 37 Liu, X.; Ma, S.; Ding, Y.; Gao, J.; Liu, X.; Yao, J.; Dai, S. Molecular Engineering of Simple Carbazole-triphenylamine Hole Transporting Materials by Replacing Benzene with Pyridine Unit for Perovskite Solar Cells. Sol. RRL 2019, 3, 1800337.
- 38 Ding, X.; Wang, H.; Chen, C.; Li, H.; Tian, Y.; Li, Q.; Wu, C.; Ding, L.; Yang, X.; Cheng, M. Passivation Functionalized Phenothiazine-based Hole Transport Material for Highly Efficient Perovskite Solar Cell with Efficiency Exceeding 22%. Chem. Eng. J. 2021, 410, 128328.
- 39 Hussain, M. W.; Shin, H. J.; Lee, B. R.; Ak, M.; Ko, S.-J.; Lee, J.; Choi, H. Design of Nonfused Nonfullerene Acceptors Based on Pyrido- or Benzothiadiazole Cores for Organic Solar Cells. ACS Appl. Energy Mater. 2022, 5, 2202–2210.
- 40 Enoki, T.; Matsuo, K.; Ohshita, J.; Ooyama, Y. Synthesis and Optical and Electrochemical Properties of Julolidine-structured Pyrido[3,4-b]indole Dye. Phys. Chem. Chem. Phys. 2017, 19, 3565–3574.
- 41 Zhao, X.; Yao, C.; Gu, K.; Liu, T.; Xia, Y.; Loo, Y.-L. A Hole-transport Material That Also Passivates Perovskite Surface Defects for Solar Cells with Improved Efficiency and Stability. Energy Environ. Sci. 2020, 13, 4334–4343.
- 42 Yang, H.; Shen, Y.; Xu, G.; Yang, F.; Wu, X.; Ding, J.; Chen, H.; Chen, W.; Wu, Y.; Cheng, Q.; Jin, C.; Li, Y. Functional Spiro-OMeTAD-like dopant for Li-Ion-free hole transport layer to develop stable and efficient n-i-p perovskite solar cells. Nano Energy 2024, 119, 109033.
- 43 Yu, X.; Gao, D.; Li, Z.; Sun, X.; Li, B.; Zhu, Z.; Li, Z. Green-solvent Processable Dopant-free Hole Transporting Materials for Inverted Perovskite Solar Cells. Angew. Chem. Int. Ed. 2023, 62, e202218752.
- 44 Sun, X.; Li, Z.; Yu, X.; Wu, X.; Zhong, C.; Liu, D.; Lei, D.; Jen, A. K.-Y., Li, Z.; Zhu, Z. Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridine-Based Dopant-Free Polymer Semiconductor. Angew. Chem. Int. Ed. 2021, 60, 7227–7233.
- 45Frisch, M. J.; Trucks, G. W.; Schlegel, H.B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.
- 46 Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592.
- 47 Sun, X.; Wu, F.; Zhong, C.; Zhu, L.; Li, Z. A Structure-property Study of Fluoranthene-cored Hole-transporting Materials Enables 19.3% Efficiency in Dopant-free Perovskite Solar Cells. Chem. Sci. 2019, 10, 6899–6907.
- 48 Zhang, F.; Wang, S.; Zhu, H.; Liu, X.; Liu, H.; Li, X.; Xiao, Y.; Zakeeruddin, S. M.; Grätzel, M. Impact of Peripheral Groups on Phenothiazine-based Hole-transporting Materials for Perovskite Solar Cells. ACS Energy Lett. 2018, 3, 1145–1152.
- 49 Li, Q.; Li, Z. Molecular Packing: Another Key Point for the Performance of Organic and Polymeric Optoelectronic Materials. Acc. Chem. Res. 2020, 53, 962–973.