Water-Driven Malleable, Weldable and Eco-Friendly Recyclable Carbon Fiber Reinforced Dynamic Composites†
Corresponding Author
Ping Yu
School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005 China
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorQirui Huang
School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005 China
Search for more papers by this authorYi Wang
School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005 China
Search for more papers by this authorWan Peng
School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005 China
Search for more papers by this authorZichen Jia
School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005 China
Search for more papers by this authorHaiyue Wang
School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005 China
Search for more papers by this authorJuanjuan Ma
School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005 China
Search for more papers by this authorCorresponding Author
Chunyu Wang
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorCorresponding Author
Xuzhou Yan
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorCorresponding Author
Ping Yu
School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005 China
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorQirui Huang
School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005 China
Search for more papers by this authorYi Wang
School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005 China
Search for more papers by this authorWan Peng
School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005 China
Search for more papers by this authorZichen Jia
School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005 China
Search for more papers by this authorHaiyue Wang
School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005 China
Search for more papers by this authorJuanjuan Ma
School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005 China
Search for more papers by this authorCorresponding Author
Chunyu Wang
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorCorresponding Author
Xuzhou Yan
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorDedicated to the Special Issue of Emerging Themes in Polymer Science.
Comprehensive Summary
Traditional carbon fiber-reinforced polymers based on thermoset matrix have been extensively used in the fields of wind turbine blades, automotive sector, and aerospace, among many others. However, there is still a major challenge of recycling those polymers due to the high cost and adverse impacts on the environment. In this work, we apply a polyimine network as matrix, which possess considerable tensile and thermal properties, to prepare the carbon fiber reinforced polyimine materials with trifluoromethyl diphenoxybenzene units (CFRFP) using a prepreg-based compression molding method. The CFRFP can be reshaped or reprocessed by heat or with water rapidly, and exhibited multifunction, including welding, chemical recycling, etc. These unique findings gained from our study will facilitate the manufacturing capability and enrich the types of fiber-reinforced composites.
Supporting Information
Filename | Description |
---|---|
cjoc202300585-sup-0001-supinfo.pdfPDF document, 1.6 MB |
Appendix S1 Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1(a) García, J. M.; Jones, G. O.; Virwani, K.; McCloskey, B. D.; Boday, D. J.; Huurne, G. M. T; Horn H. W.; Coady, D. J.; Bintaleb, A. M.; Alabdulrahman, A. M.; Alsewailem, F.; Almegren, H. A.; Hedrick, J. L. Recyclable, Strong Thermosets and Organogels via Paraformaldehyde Condensation with Diamines. Science 2014, 344, 732–735; (b) Huang, Z.; Deng, Z.; Dong, C.; Fan, J.; Ren, Y. A Closed-Loop Recycling Process for Carbon Fiber Reinforced Vinyl Ester Resin Composite. Chem. Eng. J. 2022, 446, 137254.
- 2(a) Ogi, K.; Nishikawa, T.; Okano, Y.; Taketa, I. Mechanical Properties of ABS Resin Reinforced with Recycled CFRP. Adv. Compos. Mater. 2007, 16, 181–194;
- 3(b) Piñero-Hernanz, R.; García-Serna, J.; Dodds, C.; Hyde, J.; Poliakoff, M.; Cocero, M.-J.; Kingman, S.; Pickering, S. Chemical Recycling of Carbon Fibre Composites Using Alcohols under Subcritical and Supercritical Conditions. J. Supercrit. Fluids 2008, 46, 83–92; (c) Qin, B.; Liu, S.; Xu, J. Reversible Amidation Chemistry Enables Closed-Loop Chemical Recycling of Carbon Fiber Reinforced Polymer Composites to Monomers and Fibers. Angew. Chem. Int. Ed. 2023, e202311856.
- 4 Li, C.; Wang, C.; Keplinger, C.; Zuo, J.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; You, X.; Bao, Z. A Highly Stretchable Autonomous Self-Healing Elastomer. Nat. Chem. 2016, 8, 618–624.
- 5(a) Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-Like Malleable Materials from Permanent Organic Networks. Science 2011, 334, 965–968; (b) Zhang, X.; Zhao, J.; Liu, K.; Li, G.; Zhao, D.; Zhang, Z.; Wan, J.; Yang, X.; Bai, R.; Wang, Y.; Zhang, W.; Yan, X. Weldable and Closed-Loop Recyclable Monolithic Dynamic Covalent Polymer Aerogels. Natl. Sci. Rev. 2022, 9, nwac012; (c) Clarke, R. W.; Sandmeier, T.; Franklin, K. A.; Reich, D.; Zhang, X.; Vengallur, N.; Patra, T. K.; Tannenbaum, R. J.; Adhikari, S.; Kumar, S. K.; Rovis, T.; Chen, E. Y. X. Dynamic Crosslinking Compatibilizes Immiscible Mixed Plastics. Nature 2023, 616, 731–739; (d) Zhao, J.; Zhang, Z.; Wang, C.; Yan, X. Synergistic Dual Dynamic Bonds in Covalent Adaptable Networks. CCS Chem. 2023, DOI: https://doi.org/10.31635/ccschem.023.202303045.
- 6 Ma, Y.; Jiang, X.; Shi, Z.; Berrocal, J. A.; Weder, C. Closed-Loop Recycling of Vinylogous Urethane Vitrimers. Angew. Chem. Int. Ed. 2023, 62, e202306188.
- 7 Zhang, J.; Zhang, C.; Shang, Q.; Hu, Y.; Song, F.; Jia, P.; Zhu, G.; Huang, J.; Liu, C.; Hu, L.; Zhou, Y. Mechanically Robust, Healable, Shape Memory, and Reprocessable Biobased Polymers based on Dynamic Pyrazole-Urea Bonds. Eur. Polym. J. 2022, 169, 111133.
- 8 Zhu, P.; Luo, X.; Lin, X.; Qiu, Z.; Chen, R.; Wang, X.; Wang, Y.; Deng, Y.; Mao, Y. A Self-Healable, Recyclable, and Flexible Thermoelectric Device for Wearable Energy Harvesting and Personal Thermal Management. Energy Convers. Manag. 2023, 285, 117017.
- 9 Wang, T.; Wang, W.; Feng, H.; Sun, T.; Ma, C.; Cao, L.; Qin, X.; Lei, Y.; Piao, J.; Feng, C.; Cheng, Q.; Chen, S. Photothermal Nanofiller-Based Polydimethylsiloxane Anticorrosion Coating with Multiple Cyclic Self-Healing and Long-Term Self-Healing Performance. Chem. Eng. J. 2022, 446, 137077.
- 10 Zhang, X.; Eichen, Y.; Miao, Z.; Zhang, S.; Cai, Q.; Liu, W.; Zhao, J.; Wu, Z. Novel Phosphazene-Based Flame Retardant Polyimine Vitrimers with Monomer-Recovery and High Performances. Chem. Eng. J. 2022, 440, 135806.
- 11 Zhu, G.; Hou, Y.; Xia, N.; Wang, X.; Zhang, C.; Zheng, J.; Jin, D.; Zhang, L. Fully Recyclable, Healable, Soft, and Stretchable Dynamic Polymers for Magnetic Soft Robots. Adv. Funct. Mater. 2023, 33, 2300888.
- 12 Sun, J.; He, H.; Zhao, K.; Cheng, W.; Li, Y.; Zhang, P.; Wan, S.; Liu, Y.; Wang, M.; Li, M.; Wei, Z.; Li, B.; Zhang, Y.; Li, C.; Sun, Y.; Shen, J.; Li, J.; Wang, F.; Ma, C.; Tian, Y.; Su, J.; Chen, D.; Fan, C.; Zhang, H.; Liu, K. Protein Fibers with Self-Recoverable Mechanical Properties via Dynamic Imine Chemistry. Nat. Commun. 2023, 14, 5348.
- 13 Si, H.; Zhou, L.; Wu, Y.; Song, L.; Kang, M.; Zhao, X.; Chen, M. Rapidly Reprocessable, Degradable Epoxy Vitrimer and Recyclable Carbon Fiber Reinforced Thermoset Composites Relied on High Contents of Exchangeable Aromatic Disulfide Crosslinks. Compos. Part B Eng. 2020, 199, 108278.
- 14 An, X.; Ding, Y.; Xu, Y.; Zhu, J.; Wei, C.; Pan, X. Epoxy Resin with Exchangeable Diselenide Crosslinks to Obtain Reprocessable, Repairable and Recyclable Fiber-Reinforced Thermoset Composites. React. Funct. Polym. 2022, 172, 105189.
- 15(a) Yu, L.; Lei, Z.; Sun, X.; Ding, P.; Wesche, A.; Jin, Y.; Zhang, W.; Long, R. Rapid Fabrication of Fiber-Reinforced Polyimine Composites with Reprocessability, Repairability, and Recyclability. ACS Appl. Polym. Mater. 2021, 3, 5808–5817; (b) Wang, Y.; Xu, A.; Zhang, L.; Chen, Z.; Qin, R.; Liu, Y.; Jiang, X.; Ye, D.; Liu, Z. Recyclable Carbon Fiber Reinforced Vanillin-Based Polyimine Vitrimers: Degradation and Mechanical Properties Study. Macromol. Mater. Eng. 2022, 307, 2100893.
- 16 Xu, Y.; Zhang, H.; Dai, S.; Xu, S.; Wang, J.; Bi, L.; Jiang, J.; Chen, Y. Hyperbranched Polyester Catalyzed Self-Healing Bio-Based Vitrimer for Closed-Loop Recyclable Carbon Fiber-Reinforced Polymers. Compos. Sci. Technol. 2022, 228, 109676.
- 17 Qiao, Z.; Wang, M.; Jiang, J.; Liu, H.; Wang, M.; Zhao, W.; Wang, Z. High-Performance and Degradable Polybenzoxazine/VU Vitrimer and Its Application for Carbon Fiber Recycling. ACS Sustain. Chem. Eng. 2022, 10, 9113.
- 18 Liu, X.; Zhang, E.; Liu, J.; Qin, J.; Wu, M.; Yang, C.; Liang, L. Self-Healing, Reprocessable, Degradable, Thermadapt Shape Memory Multifunctional Polymers based on Dynamic Imine Bonds and Their Application in Nondestructively Recyclable Carbon Fiber Composites. Chem. Eng. J. 2023, 454, 139992.
- 19 Xu, Y.; Ma, H.; Zhang, H.; Xu, S.; Cheng, X.; Bi, L.; Jiang, J.; Chen, Y. A Dual Dynamic Network Self-Healing Bio-Based Vitrimer and Its Application in Multiply Recyclable Carbon Fiber Reinforced Polymers. Ind. Crops Prod. 2023, 198, 116755.
- 20 Sun, Y.; Tian, X.; Xie, H.; Shi, B.; Zhong, J.; Liu, X.; Yang, Y. Reprocessable and Degradable Bio-Based Polyurethane by Molecular Design Engineering with Extraordinary Mechanical Properties for Recycling Carbon Fiber. Polymer 2022, 258, 125313.
- 21(a) Yu, P.; Wang, H.; Wang, Y.; Liu, D.; Xin, Y.; Li, R.; Jia, X.; Liu, L.; Zhang, D.; Wang, C.; Zhao, J.; Zhang, Z.; Yan, X. Self-Healable, Malleable, Ecofriendly Recyclable and Robust Polyimine Thermosets Derived from Trifluoromethyl Diphenoxybenzene Backbones. Chem. Eur. J. 2023, 29, e202203560; (b) Yu, P.; Wang, H.; Li, T.; Wang, G.; Jia, Z.; Dong, X.; Xu, Y.; Ma, Q.; Zhang, D.; Ding, H.; Yu, B. Mechanically Robust, Recyclable, and Self-Healing Polyimine Networks. Adv. Sci. 2023, 10, 2300958.
- 22 Chen, K.; Guo, X.; Chen, M. Controlled Radical Copolymerization Toward Well-Defined Fluoropolymers. Angew. Chem. Int. Ed. 2023, e202310636.
- 23(a) Zhang, Y.; Dai, C.; Zhou, S.; Liu, B. Enabling Shape Memory and Healable Effects in A Conjugated Polymer by Incorporating Siloxane via Dynamic Imine Bond. Chem. Commun. 2018, 72, 10092;
10.1039/C8CC05410J Google Scholar(b) Wen, J.; Jiang, S.; Wang, J.; Li, X.; Bi, Z.; Jin, Y.; Fan, L.; Wang, L.; Wu, Y.; Gan, F. Polyimide Solution with Reversible Sol-Gel Transition by Construction of Dynamic π-π Stacking. Polymer 2023, 278, 126006.
- 24(a) Chen, P.; Ding, Y.; Wang, Y.; Zhao, H.; Li, P.; Liu, Y.; Gao, C. Functional Bio-Based Vitrimer with Excellent Healing and Recyclability based on Conjugated Deflection Self-Toughening. Chem. Eng. J. 2023, 474, 145680; (b) Li, G.; Zhang, X.; Yang, S.; Li, T.; Wang, Y.; Chen, M.; Dong, W. Fabricating a Repairable, Recyclable, Imine-Based Dynamic Covalent Thermosetting Resin with Excellent Water Resistance by Introducing Dynamic Covalent Oxime Bonds. ChemSusChem 2021, 14, 4340–4348.
- 25 Liu, X.; Li, Y.; Fang, X.; Zhang, Z.; Li, S.; Sun, J. Healable and Recyclable Polymeric Materials with High Mechanical Robustness. ACS Mater. Lett. 2022, 4, 554–571.
- 26 Shi, Q.; Jin, C.; Chen, Z.; An, L.; Wang, T. On the Welding of Vitrimers: Chemistry, Mechanics and Applications. Adv. Funct. Mater. 2023, 2300288.
- 27(a) Taynton, P.; Ni, H.; Zhu, C.; Yu, K.; Loob, S.; Jin, Y.; Qi, H. J.; Zhang, W. Repairable Woven Carbon Fiber Composites with Full Recyclability Enabled by Malleable Polyimine Networks. Adv. Mater. 2016, 28, 2904–2909; (b) Tretbar, C.; Castro, J.; Yokoyama, K.; Guan, Z. Fluoride-Catalyzed Siloxane Exchange as A Robust Dynamic Chemistry for High-Performance Vitrimers. Adv. Mater. 2023, 35, 2303280.
- 28 Li, P.; Zhang, J.; Ma, J.; Xu, C.; Liang, X.; Yuan, T.; Hu, Y.; Yang, Z. Fully Bio-Based Thermosetting Polyimine Vitrimers with Excellent Adhesion, Rapid Self-Healing, Multi-Recyclability and Antibacterial Ability. Ind. Crops Prod. 2023, 204, 117288.
- 29(a) Yue, L.; Kuang, X.; Sun, X.; Qi, H. J. Recyclable Thermoset Polymers: Beyond Self-Healing, Woodhead Publishing, Cambridge, UK 2022, pp. 483–511; (b) Hu, H.; Chen, Y.; You, F.; Yao, J.; Yang, H.; Jiang, X.; Xia, B. Y. Recycling and Upgrading Utilization of Polymer Plastics. Chin. J. Chem. 2023, 41, 469–480; (c) Weng, C.; Tang, X. Circular Polymers from Ring-Opening Polymerization of Five-Membered (Thio)lactones and Derivatives. Chin. J. Chem. 2023, 41, 1603–1607.
- 30 Wan, B.; Dong, X.; Yang, X.; Wang, J.; Zheng, M.; Dang, Z.; Chen, G.; Zha, J. Rising of Dynamic Polyimide Materials: A Versatile Dielectric for Electrical and Electronic Applications. Adv. Mater. 2023, 2301185.
- 31 Saito, K.; Eisenreich, F.; Türel, T.; Tomović, Ž. Closed-Loop Recycling of Poly(imine-carbonate) Derived from Plastic Waste and Bio-Based Resources. Angew. Chem. Int. Ed. 2022, 61, e202211806.
- 32 Wu, J.; Chen, L.; Fu, T.; Zhao, H.; Guo, D.; Wang, X.; Wang, Y. New Application for Aromatic Schiff Base: High Efficient Flame-Retardant and Anti-Dripping Action for Polyesters. Chem. Eng. J. 2018, 336, 622.
- 33 Li, G.; Zhang, B.; Yan, J.; Wang, Z. Tetraphenyladamantane-Based Polyaminals for Highly Efficient Captures of CO2 and Organic Vapors. Macromolecules 2014, 47, 6664.
- 34 Wang, Y.; Zhang, H.; Zhang, Z.; Zhao, J.; Bai, R.; Liu, Y.; Zhang, X.; Yan, X. Thermo-Responsive Topological Metamorphosis in Covalent-and- Supramolecular Polymer Architectures. Aggregate 2022, 3, e206.
- 35 Shen, Y.; Xu, N.; Adraro, Y. A.; Wang, B.; Liu, Y.; Yuan, W.; Xu, X.; Huang, Y.; Hu, Z. Imine or Secondary Amine-Derived Degradable Polyaminal: Low-Cost Matrix Resin with High Performance. ACS Sustainable Chem. Eng. 2020, 8, 1943–1953.
- 36 Ma, Y.; Li, R.; Luo, S.; Shen, X.; Tao, R.; Jin, Y.; Zhang, W.; Qiu, L. Highly Conductive Poly(Imide-Imine) Hybrid Vitrimer-Graphene Aerogel Composites. Chin. J. Chem. 2023, 41, 2125–2131.
- 37(a) Jiang, X.; Tang, P. Recent Advances of Trifluoromethoxylation Reactions Using TFMS and TFBO. Chin. J. Chem. 2021, 39, 255–264; (b) Berne, D.; Poli, R.; Caillol, S.; Ladmiral, V.; Leclerc, E. Combination of Fluorine and Tertiary Amine Activation in Catalyst-Free Thia-Michael Covalent Adaptable Networks. Macromolecules 2023, 56, 8260.
- 38(a) Zhu, J.; Watson, E. M.; Tang, J.; Chen, E. Y. X. A Synthetic Polymer System with Repeatable Chemical Recyclability. Science 2018, 360, 398–403; (b) Liu, Z.; Fang, Z.; Zheng, N.; Yang, K.; Sun, Z.; Li, S.; Li, W.; Wu, J.; Xie, T. Chemical Upcycling of Commodity Thermoset Polyurethane Foams Towards High-Performance 3D Photo-Printing Resins. Nat. Chem. 2023, DOI: https://doi.org/10.1038/s41557-023-01308-9.