Recent Advances in C—F Bond Formation from Carbon-Centered Radicals
Jihua Zhang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
These authors contributed equally.
Search for more papers by this authorJuanjuan Wang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
These authors contributed equally.
Search for more papers by this authorCorresponding Author
Qiang Cheng
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
E-mail: [email protected]Search for more papers by this authorJihua Zhang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
These authors contributed equally.
Search for more papers by this authorJuanjuan Wang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
These authors contributed equally.
Search for more papers by this authorCorresponding Author
Qiang Cheng
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
E-mail: [email protected]Search for more papers by this authorComprehensive Summary
Construction of C—F bonds is a direct and efficient method for introducing fluorine into pharmaceuticals, agrochemicals, and materials. Strategies such as nucleophilic, electrophilic, radical, and transition-metal catalyzed fluorination have been developed to meet the demand of diverse C—F bond formation. Among them, radical fluorination has been witnessed with substantial advancement in a recent decade. Herein, we reviewed methods for formation of C—F bonds with carbon-centered radicals as key intermediates, especially in recent five years. We introduce in the paper with different fluorinating reagents, strategies for radical generation, and application in late-stage functionalization and synthesis of PET tracers. We also indicate the current limitations and propose the direction of the field for the future development.
Key Scientists
Radical fluorination was recognized as an old and uncontrolled reaction that may date back to the time when element fluorine was first mixed with organic compounds by Henri Moissan in 1891. The development of the field was slow in combination with discovery of new fluorinating reagents. Substantial changes took place in 2012, when the first example of carbon radical fluorination with robust and mild fluorinating reagents, such as NFSI and Selectfluor, was reported by the Sammis group. In the same year, Groves, Lectka, Li, and Boger led the pioneering works on aliphatic C—H fluorination, decarboxylative fluorination, and fluorofunctionalization of alkenes in a radical manner. Photoredox catalysis was introduced to radical fluorination in 2013 by the Chen group, which opens up a new avenue for diverse fluorinative transformations. Most of the previous works focus on radical fluorination to form C(sp3)–F bonds. In 2018, the challenging non-directed aromatic C—H fluorination was solved by Ritter and coworkers. Direct arene fluorination with fluoride ion was later disclosed by the Nicewicz group in 2019. There are many other scientists that have also made tremendous contribution to the development of radical fluorination, with too limited space to list them all. We only list those with first discoveries that may point to the new direction of radical fluorination.
References
- 1 Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). Chem. Rev. 2014, 114, 2432–2506.
- 2 Böhm, H.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Müller, K.; Obst-Sander, U.; Stahl, M. Fluorine in Medicinal Chemistry. ChemBioChem 2004, 5, 637–643.
- 3 Jeschke, P. The Unique Role of Fluorine in the Design of Active Ingredients for Modern Crop Protection. ChemBioChem 2004, 5, 570–589.
- 4 Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Fluorinated Organic Materials for Electronic and Optoelectronic Applications: The Role of the Fluorine Atom. Chem. Commun. 2007, 10, 1003–1022.
- 5 Maienfisch, P.; Hall, R. G. The Importance of Fluorine in the Life Science Industry. Chimia 2004, 58, 93.
- 6 O'Hagan, D. Understanding Organofluorine Chemistry. An Introduction to the C—F Bond. Chem. Soc. Rev. 2008, 37, 308–319.
- 7 O'Hagan, D.; Schaffrath, C.; Cobb, S. L.; Hamilton, J. T. G.; Murphy, C. D. Biosynthesis of an Organofluorine Molecule. Nature 2002, 416, 279–279.
- 8 Dong, C.; Huang, F.; Deng, H.; Schaffrath, C.; Spencer, J. B.; O'Hagan, D.; Naismith, J. H. Crystal Structure and Mechanism of a Bacterial Fluorinating Enzyme. Nature 2004, 427, 561–565.
- 9 Britton, R.; Gouverneur, V.; Lin, J.-H.; Meanwell, M.; Ni, C.; Pupo, G.; Xiao, J.-C.; Hu, J. Contemporary Synthetic Strategies in Organofluorine Chemistry. Nat. Rev. Methods Primers 2021, 1, 47.
- 10
Hu, J.; Umemoto, T. Fluorination, Springer Singapore, Singapore, 2020.
10.1007/978-981-10-1855-8 Google Scholar
- 11 Campbell, M. G.; Ritter, T. Modern Carbon–Fluorine Bond Forming Reactions for Aryl Fluoride Synthesis. Chem. Rev. 2015, 115, 612–633.
- 12 Wilkinson, J. A. Recent Advances in the Selective Formation of the Carbon-Fluorine Bond. Chem. Rev. 1992, 92, 505–519.
- 13 Liang, T.; Neumann, C. N.; Ritter, T. Introduction of Fluorine and Fluorine-Containing Functional Groups. Angew. Chem. Int. Ed. 2013, 52, 8214–8264.
- 14 Champagne, P. A.; Desroches, J.; Hamel, J.-D.; Vandamme, M.; Paquin, J.-F. Monofluorination of Organic Compounds: 10 Years of Innovation. Chem. Rev. 2015, 115, 9073–9174.
- 15 Neumann, C. N.; Ritter, T. Organic Reactions, John Wiley & Sons, Ltd., 2020.
- 16 Chen, C.; Fu, L.; Chen, P.; Liu, G. Recent Advances and Perspectives of Transition Metal-Catalyzed Asymmetric Fluorination Reactions. Chin. J. Chem. 2017, 35, 1781–1788.
- 17 Hull, K. L.; Anani, W. Q.; Sanford, M. S. Palladium-Catalyzed Fluorination of Carbon−Hydrogen Bonds. J. Am. Chem. Soc. 2006, 128, 7134–7135.
- 18 Ball, N. D.; Sanford, M. S. Synthesis and Reactivity of a Mono-σ-Aryl Palladium(IV) Fluoride Complex. J. Am. Chem. Soc. 2009, 131, 3796–3797.
- 19 Furuya, T.; Ritter, T. Carbon−Fluorine Reductive Elimination from a High-Valent Palladium Fluoride. J. Am. Chem. Soc. 2008, 130, 10060–10061.
- 20 Furuya, T.; Benitez, D.; Tkatchouk, E.; Strom, A. E.; Tang, P.; Goddard, W. A.; Ritter, T. Mechanism of C−F Reductive Elimination from Palladium(IV) Fluorides. J. Am. Chem. Soc. 2010, 132, 3793–3807.
- 21 Furuya, T.; Kaiser, H. M.; Ritter, T. Palladium-mediated Fluorination of Arylboronic Acids. Angew. Chem. Int. Ed. 2008, 47, 5993–5996.
- 22 Watson, D. A.; Su, M.; Teverovskiy, G.; Zhang, Y.; García-Fortanet, J.; Kinzel, T.; Buchwald, S. L. Formation of ArF from LPdAr(F): Catalytic Conversion of Aryl Triflates to Aryl Fluorides. Science 2009, 325, 1661–1664.
- 23 Rueda-Becerril, M.; Chatalova Sazepin, C.; Leung, J. C. T.; Okbinoglu, T.; Kennepohl, P.; Paquin, J.-F.; Sammis, G. M. Fluorine Transfer to Alkyl Radicals. J. Am. Chem. Soc. 2012, 134, 4026–4029.
- 24 Yin, F.; Wang, Z.; Li, Z.; Li, C. Silver-Catalyzed Decarboxylative Fluorination of Aliphatic Carboxylic Acids in Aqueous Solution. J. Am. Chem. Soc. 2012, 134, 10401–10404.
- 25 Barker, T. J.; Boger, D. L. Fe(III)/NaBH4-Mediated Free Radical Hydrofluorination of Unactivated Alkenes. J. Am. Chem. Soc. 2012, 134, 13588–13591.
- 26 Bloom, S.; Pitts, C. R.; Miller, D. C.; Haselton, N.; Holl, M. G.; Urheim, E.; Lectka, T. A Polycomponent Metal-Catalyzed Aliphatic, Allylic, and Benzylic Fluorination. Angew. Chem. Int. Ed. 2012, 51, 10580–10583.
- 27 Liu, W.; Huang, X.; Cheng, M.-J.; Nielsen, R. J.; Goddard, W. A.; Groves, J. T. Oxidative Aliphatic C-H Fluorination with Fluoride Ion Catalyzed by a Manganese Porphyrin. Science 2012, 337, 1322–1325.
- 28 Yan, H.; Zhu, C. Recent Advances in Radical-Mediated Fluorination through C–H and C–C Bond Cleavage. Sci. China Chem. 2017, 60, 214–222.
- 29 Bui, T. T.; Hong, W. P.; Kim, H.-K. Recent Advances in Visible Light- Mediated Fluorination. J. Fluorine Chem. 2021, 247, 109794.
- 30 Zou, Z.; Zhang, W.; Wang, Y.; Pan, Y. Recent Advances in Electrochemically Driven Radical Fluorination and Fluoroalkylation. Org. Chem. Front. 2021, 8, 2786–2798.
- 31 Fuchigami, T.; Inagi, S. Recent Advances in Electrochemical Systems for Selective Fluorination of Organic Compounds. Acc. Chem. Res. 2020, 53, 322–334.
- 32 Tarantino, G.; Hammond, C. Catalytic C(Sp3)–F Bond Formation: Recent Achievements and Pertaining Challenges. Green Chem. 2020, 22, 5195–5209.
- 33 Paquin, J.-F.; Sammis, G.; Chatalova-Sazepin, C.; Hemelaere, R. Recent Advances in Radical Fluorination. Synthesis 2015, 47, 2554–2569.
- 34 Lantaño, B.; Postigo, A. Radical Fluorination Reactions by Thermal and Photoinduced Methods. Org. Biomol. Chem. 2017, 15, 9954–9973.
- 35 Börgel, J.; Ritter, T. Late-Stage Functionalization. Chem 2020, 6, 1877–1887.
- 36 Guillemard, L.; Kaplaneris, N.; Ackermann, L.; Johansson, M. J. Late-Stage C–H Functionalization Offers New Opportunities in Drug Discovery. Nat. Rev. Chem. 2021, 5, 522–545.
- 37 Zhang, L.; Ritter, T. A Perspective on Late-Stage Aromatic C–H Bond Functionalization. J. Am. Chem. Soc. 2022, 144, 2399–2414.
- 38 Bellotti, P.; Huang, H.-M.; Faber, T.; Glorius, F. Photocatalytic Late- Stage C–H Functionalization. Chem. Rev. 2023, 123, 4237–4352.
- 39 Castellino, N. J.; Montgomery, A. P.; Danon, J. J.; Kassiou, M. Late-Stage Functionalization for Improving Drug-like Molecular Properties. Chem. Rev. 2023, 123, 8127–8153.
- 40 Jacobson, O.; Kiesewetter, D. O.; Chen, X. Fluorine-18 Radiochemistry, Labeling Strategies and Synthetic Routes. Bioconjugate Chem. 2015, 26, 1–18.
- 41 Yang, J.-D.; Wang, Y.; Xue, X.-S.; Cheng, J.-P. A Systematic Evaluation of the N–F Bond Strength of Electrophilic N–F Reagents: Hints for Atomic Fluorine Donating Ability. J. Org. Chem. 2017, 82, 4129–4135.
- 42 Oliva, M.; Coppola, G. A.; Van der Eycken, E. V.; Sharma, U. K. Photochemical and Electrochemical Strategies towards Benzylic C−H Functionalization: A Recent Update. Adv. Synth. Catal. 2021, 363, 1810–1834.
- 43 Danahy, K. E.; Cooper, J. C.; Van Humbeck, J. F. Benzylic Fluorination of Aza-Heterocycles Induced by Single-Electron Transfer to Selectfluor. Angew. Chem. Int. Ed. 2018, 57, 5134–5138.
- 44 Meanwell, M.; Adluri, B. S.; Yuan, Z.; Newton, J.; Prevost, P.; Nodwell, M. B.; Friesen, C. M.; Schaffer, P.; Martin, R. E.; Britton, R. Direct Heterobenzylic Fluorination, Difluorination and Trifluoromethylthiolation with Dibenzenesulfonamide Derivatives. Chem. Sci. 2018, 9, 5608–5613.
- 45 Yang, L.; Tan, D.; Fan, W.; Liu, X.; Wu, J.; Huang, Z.; Li, Q.; Wang, H. Photochemical Radical C–H Halogenation of Benzyl N-Methyliminodiacetyl (MIDA) Boronates: Synthesis of α-Functionalized Alkyl Boronates. Angew. Chem. Int. Ed. 2021, 60, 3454–3458.
- 46 Buss, J. A.; Vasilopoulos, A.; Golden, D. L.; Stahl, S. S. Copper-Catalyzed Functionalization of Benzylic C–H Bonds with N-Fluorobenzenesulfonimide: Switch from C–N to C—F Bond Formation Promoted by a Redox Buffer and Brønsted Base. Org. Lett. 2020, 22, 5749–5752.
- 47 Ni, Z.; Zhang, Q.; Xiong, T.; Zheng, Y.; Li, Y.; Zhang, H.; Zhang, J.; Liu, Q. Highly Regioselective Copper-Catalyzed Benzylic C–H Amination by N-Fluorobenzenesulfonimide. Angew. Chem. Int. Ed. 2012, 51, 1244–1247.
- 48 Vasilopoulos, A.; Golden, D. L.; Buss, J. A.; Stahl, S. S. Copper-Catalyzed C–H Fluorination/Functionalization Sequence Enabling Benzylic C–H Cross Coupling with Diverse Nucleophiles. Org. Lett. 2020, 22, 5753–5757.
- 49 Capaldo, L.; Ravelli, D. Hydrogen Atom Transfer (HAT): A Versatile Strategy for Substrate Activation in Photocatalyzed Organic Synthesis. Eur. J. Org. Chem. 2017, 2017, 2056–2071.
- 50 Capaldo, L.; Ravelli, D.; Fagnoni, M. Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C–H Bonds Elaboration. Chem. Rev. 2022, 122, 1875–1924.
- 51 Yuan, Z.; Yang, H.; Malik, N.; Čolović, M.; Weber, D. S.; Wilson, D.; Bénard, F.; Martin, R. E.; Warren, J. J.; Schaffer, P.; Britton, R. Electrostatic Effects Accelerate Decatungstate-Catalyzed C–H Fluorination Using [18F]- and [19F]NFSI in Small Molecules and Peptide Mimics. ACS Catal. 2019, 9, 8276–8284.
- 52 Egami, H.; Masuda, S.; Kawato, Y.; Hamashima, Y. Photofluorination of Aliphatic C–H Bonds Promoted by the Phthalimide Group. Org. Lett. 2018, 20, 1367–1370.
- 53 Ghorbani, F.; Harry, S. A.; Capilato, J. N.; Pitts, C. R.; Joram, J.; Peters, G. N.; Tovar, J. D.; Smajlagic, I.; Siegler, M. A.; Dudding, T.; Lectka, T. Carbonyl-Directed Aliphatic Fluorination: A Special Type of Hydrogen Atom Transfer Beats Out Norrish II. J. Am. Chem. Soc. 2020, 142, 14710–14724.
- 54 Harry, S. A.; Xiang, M. R.; Holt, E.; Zhu, A.; Ghorbani, F.; Patel, D.; Lectka, T. Hydroxy-Directed Fluorination of Remote Unactivated C(Sp3)–H Bonds: A New Age of Diastereoselective Radical Fluorination. Chem. Sci. 2022, 13, 7007–7013.
- 55 Holt, E.; Wang, M.; Harry, S. A.; He, C.; Wang, Y.; Henriquez, N.; Xiang, M. R.; Zhu, A.; Ghorbani, F.; Lectka, T. An Electrochemical Approach to Directed Fluorination. J. Org. Chem. 2023, 88, 2557–2560.
- 56 Guo, W.; Wang, Q.; Zhu, J. Visible Light Photoredox-Catalysed Remote C–H Functionalisation Enabled by 1,5-Hydrogen Atom Transfer (1,5-HAT). Chem. Soc. Rev. 2021, 50, 7359–7377.
- 57 Shu, C.; Feng, J.; Zheng, H.; Cheng, C.; Yuan, Z.; Zhang, Z.; Xue, X.-S.; Zhu, G. Internal Alkyne-Directed Fluorination of Unactivated C(Sp3)–H Bonds. Org. Lett. 2020, 22, 9398–9403.
- 58 Chang, L.; An, Q.; Duan, L.; Feng, K.; Zuo, Z. Alkoxy Radicals See the Light: New Paradigms of Photochemical Synthesis. Chem. Rev. 2022, 122, 2429–2486.
- 59 Guan, H.; Sun, S.; Mao, Y.; Chen, L.; Lu, R.; Huang, J.; Liu, L. Iron(II)-Catalyzed Site-Selective Functionalization of Unactivated C(Sp3)−H Bonds Guided by Alkoxyl Radicals. Angew. Chem. Int. Ed. 2018, 57, 11413–11417.
- 60 Petroselli, M.; Melone, L.; Cametti, M.; Punta, C. Lipophilic N-Hydroxyphthalimide Catalysts for the Aerobic Oxidation of Cumene: Towards Solvent-Free Conditions and Back. Chem. – Eur. J. 2017, 23, 10616–10625.
- 61 Herron, A. N.; Liu, D.; Xia, G.; Yu, J.-Q. δ-C–H Mono- and Dihalogenation of Alcohols. J. Am. Chem. Soc. 2020, 142, 2766–2770.
- 62 Kwon, K.; Simons, R. T.; Nandakumar, M.; Roizen, J. L. Strategies to Generate Nitrogen-Centered Radicals That May Rely on Photoredox Catalysis: Development in Reaction Methodology and Applications in Organic Synthesis. Chem. Rev. 2022, 122, 2353–2428.
- 63 Herron, A. N.; Hsu, C.-P.; Yu, J.-Q. δ-C–H Halogenation Reactions Enabled by a Nitrogen-Centered Radical Precursor. Org. Lett. 2022, 24, 3652–3656.
- 64 Morcillo, S. P.; Dauncey, E. M.; Kim, J. H.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Photoinduced Remote Functionalization of Amides and Amines Using Electrophilic Nitrogen Radicals. Angew. Chem. Int. Ed. 2018, 57, 12945–12949.
- 65 Jiang, H.; Studer, A. Iminyl-Radicals by Oxidation of α-Imino-oxy Acids: Photoredox-Neutral Alkene Carboimination for the Synthesis of Pyrrolines. Angew. Chem. Int. Ed. 2017, 56, 12273–12276.
- 66 Davies, J.; Sheikh, N. S.; Leonori, D. Photoredox Imino Functionalizations of Olefins. Angew. Chem. Int. Ed. 2017, 56, 13361–13365.
- 67 Guo, P.; Li, Y.; Zhang, X.-G.; Han, J.-F.; Yu, Y.; Zhu, J.; Ye, K.-Y. Redox Neutral Radical-Relay Cobalt Catalysis toward C–H Fluorination and Amination. Org. Lett. 2020, 22, 3601–3606.
- 68 Pinter, E. N.; Bingham, J. E.; AbuSalim, D. I.; Cook, S. P. N-Directed Fluorination of Unactivated Csp3–H Bonds. Chem. Sci. 2020, 11, 1102–1106.
- 69 Deng, Z.; Zhao, Z.; He, G.; Chen, G. Photoredox-Mediated Mono- and Difluorination of Remote Unactivated Methylene C(Sp3)–H Bonds of N-Alkyl Sulfonamides. Org. Lett. 2021, 23, 3631–3635.
- 70 Min, S.; Park, B.; Nedsaengtip, J.; Hyeok Hong, S. Mechanochemical Direct Fluorination of Unactivated C(Sp3)−H Bonds. Adv. Synth. Catal. 2022, 364, 1975–1981.
- 71 Ogiwara, Y.; Sakai, N. Acyl Fluorides in Late-Transition-Metal Catalysis. Angew. Chem. Int. Ed. 2020, 59, 574–594.
- 72 Meanwell, M.; Lehmann, J.; Eichenberger, M.; Martin, R. E.; Britton, R. Synthesis of Acyl Fluorides via Photocatalytic Fluorination of Aldehydic C–H Bonds. Chem. Commun. 2018, 54, 9985–9988.
- 73 Berkowitz, J.; Ellison, G. B.; Gutman, D. Three Methods to Measure RH Bond Energies. J. Phys. Chem. 1994, 98, 2744–2765.
- 74 Taylor, S. D.; Kotoris, C. C.; Hum, G. Recent Advances in Electrophilic Fluorination. Tetrahedron 1999, 55, 12431–12477.
- 75 Yamamoto, K.; Li, J.; Garber, J. A. O.; Rolfes, J. D.; Boursalian, G. B.; Borghs, J. C.; Genicot, C.; Jacq, J.; van Gastel, M.; Neese, F.; Ritter, T. Palladium-Catalysed Electrophilic Aromatic C–H Fluorination. Nature 2018, 554, 511–514.
- 76 Zhang, Y.; Wen, C.; Li, J. C5-Regioselective C–H Fluorination of 8-Aminoquinoline Amides and Sulfonamides with Selectfluor under Metal-Free Conditions. Org. Biomol. Chem. 2018, 16, 1912–1920.
- 77 Aggarwal, T.; Sushmita; Verma, A. K. Achievements in Fluorination Using Variable Reagents through a Deoxyfluorination Reaction. Org. Chem. Front. 2021, 8, 6452–6468.
- 78 Brioche, J. One-Pot Synthesis of Tertiary Alkyl Fluorides from Methyl Oxalates by Radical Deoxyfluorination under Photoredox Catalysis. Tetrahedron Lett. 2018, 59, 4387–4391.
- 79 Aguilar Troyano, F. J.; Ballaschk, F.; Jaschinski, M.; Özkaya, Y.; Gómez-Suárez, A. Light-Mediated Formal Radical Deoxyfluorination of Tertiary Alcohols through Selective Single-Electron Oxidation with TEDA2+. Chem. – Eur. J. 2019, 25, 14054–14058.
- 80 Vincent, É.; Brioche, J. Synthesis of Alkyl Fluorides by Silver-Catalyzed Radical Decarboxylative Fluorination of Cesium Oxalates. Eur. J. Org. Chem. 2021, 2021, 2421–2430.
- 81 Ma, J.; Xu, W.; Xie, J. Predictable Site-Selective Radical Fluorination of Tertiary Ethers. Sci. China Chem. 2020, 63, 187–191.
- 82 Wu, J. Review of Recent Advances in Nucleophilic C—F Bond-Forming Reactions at Sp3 Centers. Tetrahedron Lett. 2014, 55, 4289–4294.
- 83 Chen, H.; Liu, Z.; Lv, Y.; Tan, X.; Shen, H.; Yu, H.; Li, C. Selective Radical Fluorination of Tertiary Alkyl Halides at Room Temperature. Angew. Chem. Int. Ed. 2017, 56, 15411–15415.
- 84 Lovett, G. H.; Chen, S.; Xue, X.-S.; Houk, K. N.; MacMillan, D. W. C. Open-Shell Fluorination of Alkyl Bromides: Unexpected Selectivity in a Silyl Radical-Mediated Chain Process. J. Am. Chem. Soc. 2019, 141, 20031–20036.
- 85 Kumar, P.; Goel, N.; Bhagat, S. Emergence of Ag as a Catalyst of Choice for Fluorination and Trifluoromethylation Reactions. ChemCatChem 2023, 15, e202300677.
- 86 Phae-nok, S.; Pohmakotr, M.; Kuhakarn, C.; Reutrakul, V.; Soorukram, D. Site-Specific Synthesis of β-Fluorinated γ-Butyrolactams via Decarboxylative Fluorination of β-Carboxyl-γ-Butyrolactams. Eur. J. Org. Chem. 2019, 2019, 4710–4720.
- 87 Wang, Z.; Guo, C.-Y.; Yang, C.; Chen, J.-P. Ag-Catalyzed Chemoselective Decarboxylative Mono- and Gem-Difluorination of Malonic Acid Derivatives. J. Am. Chem. Soc. 2019, 141, 5617–5622.
- 88 Chen, P.; Wang, P.; Long, Q.; Ding, H.; Cheng, G.; Li, T.; Li, M. Synthesis of Reverse Glycosyl Fluorides and Rare Glycosyl Fluorides Enabled by Radical Decarboxylative Fluorination of Uronic Acids. Org. Lett. 2020, 22, 9325–9330.
- 89 Zhang, Y.; Qian, J.; Wang, M.; Huang, Y.; Hu, P. Visible-Light-Induced Decarboxylative Fluorination of Aliphatic Carboxylic Acids Catalyzed by Iron. Org. Lett. 2022, 24, 5972–5976.
- 90 Ventre, S.; Petronijevic, F. R.; MacMillan, D. W. C. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis. J. Am. Chem. Soc. 2015, 137, 5654–5657.
- 91 Wu, X.; Meng, C.; Yuan, X.; Jia, X.; Qian, X.; Ye, J. Transition-Metal- Free Visible-Light Photoredox Catalysis at Room-Temperature for Decarboxylative Fluorination of Aliphatic Carboxylic Acids by Organic Dyes. Chem. Commun. 2015, 51, 11864–11867.
- 92 Tarantino, G.; Hammond, C. Catalytic Formation of C(Sp3)–F Bonds via Heterogeneous Photocatalysis. ACS Catal. 2018, 8, 10321–10330.
- 93 Madani, A.; Anghileri, L.; Heydenreich, M.; Möller, H. M.; Pieber, B. Benzylic Fluorination Induced by a Charge-Transfer Complex with a Solvent-Dependent Selectivity Switch. Org. Lett. 2022, 24, 5376–5380.
- 94 Larrosa, I.; Cornella, J. Decarboxylative Carbon-Carbon Bond-Forming Transformations of (Hetero)Aromatic Carboxylic Acids. Synthesis 2012, 44, 653–676.
- 95 Wang, D.; Yuan, Z.; Liu, Q.; Chen, P.; Liu, G. Decarboxylative Fluorination of Arylcarboxylic Acids Promoted by Ortho-Hydroxy and Amino Groups. Chin. J. Chem. 2018, 36, 507–514.
- 96 Chen, T. Q.; Pedersen, P. S.; Dow, N. W.; Fayad, R.; Hauke, C. E.; Rosko, M. C.; Danilov, E. O.; Blakemore, D. C.; Dechert-Schmitt, A.-M.; Knauber, T.; Castellano, F. N.; MacMillan, D. W. C. A Unified Approach to Decarboxylative Halogenation of (Hetero)Aryl Carboxylic Acids. J. Am. Chem. Soc. 2022, 144, 8296–8305.
- 97 Lu, Y.-C.; West, J. G. Ring-Opening Fluorination via C–C Bond Cleavage: An Efficient Approach to Diverse Fluorinated Molecules. Tetrahedron Chem 2022, 2, 100020.
- 98 Roque, J. B.; Kuroda, Y.; Göttemann, L. T.; Sarpong, R. Deconstructive Fluorination of Cyclic Amines by Carbon-Carbon Cleavage. Science 2018, 361, 171–174.
- 99 Wang, M.; Waser, J. Oxidative Fluorination of Cyclopropylamides through Organic Photoredox Catalysis. Angew. Chem. Int. Ed. 2020, 59, 16420–16424.
- 100 Lu, Y.-C.; Jordan, H. M.; West, J. G. Rapid and Scalable Synthesis of Fluoroketones via Cerium-Mediated C–C Bond Cleavage. Chem. Commun. 2021, 57, 1871–1874.
- 101 Lu, Y.-C.; West, J. G. C–C Bond Fluorination via Manganese Catalysis. ACS Catal. 2021, 11, 12721–12728.
- 102 Deng, Y.; Kauser, N. I.; Islam, S. M.; Mohr, J. T. AgII-Mediated Synthesis of β-Fluoroketones by Oxidative Cyclopropanol Opening. Eur. J. Org. Chem. 2017, 2017, 5872–5879.
- 103 Linclau, B.; Ardá, A.; Reichardt, N.-C.; Sollogoub, M.; Unione, L.; Vincent, S. P.; Jiménez-Barbero, J. Fluorinated Carbohydrates as Chemical Probes for Molecular Recognition Studies. Current Status and Perspectives. Chem. Soc. Rev. 2020, 49, 3863–3888.
- 104 Zhou, X.; Ding, H.; Chen, P.; Liu, L.; Sun, Q.; Wang, X.; Wang, P.; Lv, Z.; Li, M. Radical Dehydroxymethylative Fluorination of Carbohydrates and Divergent Transformations of the Resulting Reverse Glycosyl Fluorides. Angew. Chem. Int. Ed. 2020, 59, 4138–4144.
- 105 Jiang, H.; Studer, A. Amidyl Radicals by Oxidation of α-Amido-oxy Acids: Transition-Metal-Free Amidofluorination of Unactivated Alkenes. Angew. Chem. Int. Ed. 2018, 57, 10707–10711.
- 106 Ngo Ndimba, A.; Vincent, É.; Brioche, J. Radical Amido- and Azido-Fluorination of α-Fluorostyrene Derivatives: An Innovative Approach Towards β-Aryl-β,β-difluoroamino Motifs. Eur. J. Org. Chem. 2022, 2022, e202201165.
- 107 Sim, J.; Campbell, M. W.; Molander, G. A. Synthesis of α-Fluoro-α- Amino Acid Derivatives via Photoredox-Catalyzed Carbofluorination. ACS Catal. 2019, 9, 1558–1563.
- 108 Pirzer, A. S.; Alvarez, E.; Friedrich, H.; Heinrich, M. R. Radical Carbofluorination of Alkenes with Arylhydrazines and Selectfluor: Additives, Mechanistic Pathways, and Polar Effects. Chem. – Eur. J. 2019, 25, 2786–2792.
- 109 Kindt, S.; Heinrich, M. R. Intermolecular Radical Carbofluorination of Non-activated Alkenes. Chem. – Eur. J. 2014, 20, 15344–15348.
- 110 Capilato, J. N.; Bume, D. D.; Lee, W. H.; Hoffenberg, L. E. S.; Jokhai, R. T.; Lectka, T. Fluorofunctionalization of C═C Bonds with Selectfluor: Synthesis of β-Fluoropiperazines through a Substrate-Guided Reactivity Switch. J. Org. Chem. 2018, 83, 14234–14244.
- 111 Li, Y.; Jiang, X.; Zhao, C.; Fu, X.; Xu, X.; Tang, P. Silver-Catalyzed Anti-Markovnikov Hydroxyfluorination of Styrenes. ACS Catal. 2017, 7, 1606–1609.
- 112 Kim, Y.; Kim, D. Y. Synthesis of Fluoromethyl-Substituted Cyclopentanones via Radical Fluorination and 1,2-Alkyl Migration Cascade of Alkenyl Cyclobutanols. Asian J. Org. Chem. 2019, 8, 679–682.
- 113 Bertrand, X.; Chabaud, L.; Paquin, J. Hydrofluorination of Alkenes: A Review. Chem. – Asian J. 2021, 16, 563–574.
- 114 Xie, Y.; Sun, P.; Li, Y.; Wang, S.; Ye, M.; Li, Z. Ligand-Promoted Iron(III)-Catalyzed Hydrofluorination of Alkenes. Angew. Chem. Int. Ed. 2019, 58, 7097–7101.
- 115 Song, P.; Zhu, S. Nickel-Catalyzed Hydrofluorination of Unactivated Alkenes through a HAT Pathway. ACS Catal. 2020, 10, 13165–13170.
- 116 Meyer, D.; Jangra, H.; Walther, F.; Zipse, H.; Renaud, P. A Third Generation of Radical Fluorinating Agents Based on N-Fluoro-N-Arylsulfonamides. Nat. Commun. 2018, 9, 4888.
- 117 Leibler, I. N.-M.; Gandhi, S. S.; Tekle-Smith, M. A.; Doyle, A. G. Strategies for Nucleophilic C(sp3)–(Radio)Fluorination. J. Am. Chem. Soc. 2023, 145, 9928–9950.
- 118 Halder, R.; Ritter, T. 18F-Fluorination: Challenge and Opportunity for Organic Chemists. J. Org. Chem. 2021, 86, 13873–13884.
- 119 Ni, C.; Jiang, F.; Zeng, Y.; Hu, J. Chemically Oxidative Fluorination with Fluoride Ions. J. Fluorine Chem. 2015, 179, 3–13.
- 120 Leibler, I. N.-M.; Tekle-Smith, M. A.; Doyle, A. G. A General Strategy for C(sp3)–H Functionalization with Nucleophiles Using Methyl Radical as a Hydrogen Atom Abstractor. Nat. Commun. 2021, 12, 6950.
- 121 Zhang, Y.; Fitzpatrick, N. A.; Das, M.; Bedre, I. P.; Yayla, H. G.; Lall, M. S.; Musacchio, P. Z. A Photoredox-Catalyzed Approach for Formal Hydride Abstraction to Enable C–H Functionalization with Nucleophilic Partners (F, C, O, N, and Br/Cl). Chem. Catal. 2022, 2, 292–308.
- 122 Yamashita, K.; Fujiwara, Y.; Hamashima, Y. Amide-Ligand-Promoted Silver-Catalyzed C–H Fluorination via Radical/Polar Crossover. J. Org. Chem. 2023, 88, 1865–1874.
- 123 Bower, J. K.; Cypcar, A. D.; Henriquez, B.; Stieber, S. C. E.; Zhang, S. C(Sp3)–H Fluorination with a Copper(II)/(III) Redox Couple. J. Am. Chem. Soc. 2020, 142, 8514–8521.
- 124 Hintz, H.; Bower, J.; Tang, J.; LaLama, M.; Sevov, C.; Zhang, S. Copper- Catalyzed Electrochemical C–H Fluorination. Chem. Catal. 2023, 3, 100491.
- 125 Chen, W.; Huang, Z.; Tay, N. E. S.; Giglio, B.; Wang, M.; Wang, H.; Wu, Z.; Nicewicz, D. A.; Li, Z. Direct Arene C–H Fluorination with 18F− via Organic Photoredox Catalysis. Science 2019, 364, 1170–1174.
- 126 Wang, L.; White, A. R.; Chen, W.; Wu, Z.; Nicewicz, D. A.; Li, Z. Direct Radiofluorination of Arene C–H Bonds via Photoredox Catalysis Using a Peroxide as the Terminal Oxidant. Org. Lett. 2020, 22, 7971–7975.
- 127 Neumann, C. N.; Ritter, T. Facile C—F Bond Formation through a Concerted Nucleophilic Aromatic Substitution Mediated by the PhenoFluor Reagent. Acc. Chem. Res. 2017, 50, 2822–2833.
- 128 Tay, N. E. S.; Chen, W.; Levens, A.; Pistritto, V. A.; Huang, Z.; Wu, Z.; Li, Z.; Nicewicz, D. A. 19F- and 18F-Arene Deoxyfluorination via Organic Photoredox-Catalysed Polarity-Reversed Nucleophilic Aromatic Substitution. Nat. Catal. 2020, 3, 734–742.
- 129 Chen, W.; Wang, H.; Tay, N. E. S.; Pistritto, V. A.; Li, K.-P.; Zhang, T.; Wu, Z.; Nicewicz, D. A.; Li, Z. Arene Radiofluorination Enabled by Photoredox-Mediated Halide Interconversion. Nat. Chem. 2022, 14, 216–223.
- 130 Wigman, B.; Lee, W.; Wei, W.; Houk, K. N.; Nelson, H. M. Electrochemical Fluorination of Vinyl Boronates through Donor-Stabilized Vinyl Carbocation Intermediates. Angew. Chem. Int. Ed. 2022, 61, e202113972.
- 131 Li, J.; Chen, J.; Sang, R.; Ham, W.-S.; Plutschack, M. B.; Berger, F.; Chabbra, S.; Schnegg, A.; Genicot, C.; Ritter, T. Photoredox Catalysis with Aryl Sulfonium Salts Enables Site-Selective Late-Stage Fluorination. Nat. Chem. 2020, 12, 56–62.
- 132 Liu, Z.; Chen, H.; Lv, Y.; Tan, X.; Shen, H.; Yu, H.-Z.; Li, C. Radical Carbofluorination of Unactivated Alkenes with Fluoride Ions. J. Am. Chem. Soc. 2018, 140, 6169–6175.
- 133 Yang, B.; Chansaenpak, K.; Wu, H.; Zhu, L.; Wang, M.; Li, Z.; Lu, H. Silver-Promoted (Radio)Fluorination of Unsaturated Carbamates via a Radical Process. Chem. Commun. 2017, 53, 3497–3500.
- 134 Deng, W.; Feng, W.; Li, Y.; Bao, H. Merging Visible-Light Photocatalysis and Transition-Metal Catalysis in Three-Component Alkyl-Fluorination of Olefins with a Fluoride Ion. Org. Lett. 2018, 20, 4245–4249.
- 135 Qian, H.; Chen, J.; Zhang, B.; Cheng, Y.; Xiao, W.-J.; Chen, J.-R. Visible- Light-Driven Photoredox-Catalyzed Three-Component Radical Cyanoalkylfluorination of Alkenes with Oxime Esters and a Fluoride Ion. Org. Lett. 2021, 23, 6987–6992.
- 136 Zhao, B.; Pan, Z.; Zhu, A.; Yue, Y.; Ma, M.; Xue, F. Electrochemical Fluorosulfonylation of Alkenes to Access Vicinal Fluorinated Sulfones Derivatives. Tetrahedron 2022, 106–107, 132651.
- 137 Feng, G.; Ku, C. K.; Zhao, J.; Wang, Q. Copper-Catalyzed Three-Component Aminofluorination of Alkenes and 1,3-Dienes: Direct Entry to Diverse β-Fluoroalkylamines. J. Am. Chem. Soc. 2022, 144, 20463–20471.
- 138 Li, Y.; Bao, J.; Zhang, Y.; Peng, X.; Yu, W.; Wang, T.; Yang, D.; Liu, Q.; Zhang, Q.; Fu, J. Three-Component Aminofluorination of Alkenes with Electronically Rich Amino Sources. Chem 2022, 8, 1147–1163.
- 139 Li, Y.; Dong, Y.; Wang, X.; Li, G.; Xue, H.; Xin, W.; Zhang, Q.; Guan, W.; Fu, J. Regio-, Site-, and Stereoselective Three-Component Aminofluorination of 1,3-Dienes via Cooperative Silver Salt and Copper Catalysis. ACS Catal. 2023, 13, 2410–2421.
- 140 Webb, E. W.; Park, J. B.; Cole, E. L.; Donnelly, D. J.; Bonacorsi, S. J.; Ewing, W. R.; Doyle, A. G. Nucleophilic (Radio)Fluorination of Redox-Active Esters via Radical-Polar Crossover Enabled by Photoredox Catalysis. J. Am. Chem. Soc. 2020, 142, 9493–9500.
- 141 Xu, P.; López-Rojas, P.; Ritter, T. Radical Decarboxylative Carbometalation of Benzoic Acids: A Solution to Aromatic Decarboxylative Fluorination. J. Am. Chem. Soc. 2021, 143, 5349–5354.