Research on Electromagnetic Wave Absorption Based on Electrospinning Technology†
Baoding Li
Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061 China
China North Industries Group 53rd Research Institute, Jinan, Shandong, 250000 China
Search for more papers by this authorJing Qiao
Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061 China
School of Mechanical Engineering, Shandong University, Jinan, Shandong, 250061 China
Search for more papers by this authorYue Liu
Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061 China
Search for more papers by this authorHaoyuan Tian
Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061 China
Search for more papers by this authorWei Liu
Institute of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057 China
Search for more papers by this authorQilei Wu
Science and Technology on Electromagnetic Compatibility Laboratory, China Ship Development and Design Centre, Wuhan, Hubei, 430064 China
Search for more papers by this authorCorresponding Author
Zhou Wang
Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Jiurong Liu
Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Zhihui Zeng
Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061 China
Suzhou Research Institute of Shandong University, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorBaoding Li
Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061 China
China North Industries Group 53rd Research Institute, Jinan, Shandong, 250000 China
Search for more papers by this authorJing Qiao
Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061 China
School of Mechanical Engineering, Shandong University, Jinan, Shandong, 250061 China
Search for more papers by this authorYue Liu
Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061 China
Search for more papers by this authorHaoyuan Tian
Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061 China
Search for more papers by this authorWei Liu
Institute of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057 China
Search for more papers by this authorQilei Wu
Science and Technology on Electromagnetic Compatibility Laboratory, China Ship Development and Design Centre, Wuhan, Hubei, 430064 China
Search for more papers by this authorCorresponding Author
Zhou Wang
Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Jiurong Liu
Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Zhihui Zeng
Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061 China
Suzhou Research Institute of Shandong University, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this author† Dedicated to the Special Issue of Electromagnetic Functional Materials.
Comprehensive Summary
At present, in order to overcome electromagnetic interference and prevent electromagnetic harm, the research of new and efficient electromagnetic wave absorbing materials has become the research focus in the field of materials science. The one-dimensional structure can promote the impedance matching and attenuation characteristics of the absorbing materials. Electrospinning, as an effective method to prepare nanofibers with high length-diameter ratio, has been widely concerned because it is suitable for structural design of various materials. In this paper, the research progress and absorption properties of nano-fiber materials prepared by electrospinning combined with different processes are introduced.
References
- 1 Li, Q.; Zhang, Z.; Qi, L.; Liao, Q.; Kang, Z.; Zhang, Y. Toward the Application of High Frequency Electromagnetic Wave Absorption by Carbon Nanostructures. Adv. Sci. 2019, 6, 1801057.
- 2 Qiao, J.; Zhang, X.; Xu, D.; Kong, L.; Lv, L.; Yang, Y.; Wang, F.; Liu, W.; Liu, J. Design and Synthesis of TiO2/Co/carbon Nanofibers with Tunable and Efficient Electromagnetic Absorption. Chem. Eng. J. 2020, 380, 122591.
- 3 Cao, M.; Wang, X.; Zhang, M.; Shu, J.; Cao, W.; Yang, H.; Fang, X.; Yuan, J. Electromagnetic Response and Energy Conversion for Functions and Devices in Low-Dimensional Materials. Adv. Funct. Mater. 2019, 29, 1807398.
- 4 Zhang, X.; Jia, Z.; Zhang, F.; Xia, Z.; Zou, J.; Gu, Z.; Wu, G. MOF-derived NiFe2S4/Porous Carbon Composites as Electromagnetic Wave Absorber. J. Colloid Interface Sci. 2022, 610, 610–620.
- 5 Hou, T.; Jia, Z.; He, S.; Su, Y.; Zhang, X.; Xu, B.; Liu, X.; Wu, G. Design and Synthesis of NiCo/Co4S3@C Hybrid Material with Tunable and Efficient Electromagnetic Absorption. J. Colloid Interface Sci. 2021, 583, 321–330.
- 6 He, P.; Cao, M.; Cao, W.; Yuan, J. Developing MXenes from Wireless Communication to Electromagnetic Attenuation. Nano-Micro Lett. 2021, 13, 115.
- 7 Wang, C.; Murugadoss, V.; Kong, J.; He, Z.; Mai, X.; Shao, Q.; Chen, Y.; Guo, L.; Liu, C.; Angaiah, S.; Guo, Z. Overview of Carbon Nanostructures and Nanocomposites for Electromagnetic Wave Shielding. Carbon 2018, 140, 696–733.
- 8 Liang, L.; Han, G.; Li, Y.; Zhao, B.; Zhou, B.; Feng, Y.; Ma, J.; Wang, Y.; Zhang, R.; Liu, C. Promising Ti3C2Tx MXene/Ni Chain Hybrid with Excellent Electromagnetic Wave Absorption and Shielding Capacity. ACS Appl. Mater. Interfaces 2019, 11, 25399–25409.
- 9 Lv, H.; Zhang, H.; Zhao, J.; Ji, G.; Du, Y. Achieving Excellent Bandwidth Absorption by a Mirror Growth Process of Magnetic Porous Polyhedron Structures. Nano Res. 2016, 9, 1813–1822.
- 10 Xiang, Z.; Shi, Y.; Zhu, X.; Cai, L.; Lu, W. Flexible and Waterproof 2D/1D/0D Construction of MXene-Based Nanocomposites for Electromagnetic Wave Absorption, EMI Shielding, and Photothermal Conversion. Nano-Micro Lett. 2021, 13, 150.
- 11 Che, R.; Peng, L.; Duan, X.; Chen, Q.; Liang, X. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401.
- 12 Liu, Q.; Cao, Q.; Bi, H.; Liang, C.; Yuan, K.; She, W.; Yang, Y.; Che, R. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption. Adv. Mater. 2016, 28, 486.
- 13 Che, R.; Zhi, C.; Liang, C.; Zhou, X. Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 2006, 83, 3.
- 14 Ma, M.; Liao, Z.; Su, X.; Zheng, Q.; Liu, Y.; Wang, Y.; Ma, Y.; Wan, F. Magnetic CoNi Alloy Particles Embedded N-doped Carbon Fibers with Polypyrrole for Excellent Electromagnetic Wave Absorption. J. Colloid Interface Sci. 2022, 608, 2203–2212.
- 15 Chen, J.; Zheng, J.; Wang, F.; Huang, Q.; Ji, G. Carbon Fibers Embedded with Fe-III-MOF-5-derived Composites for Enhanced Microwave Absorption. Carbon 2021, 174, 509–517.
- 16
Yang, M.; Yuan, Y.; Li, Y.; Sun, X.; Wang, S.; Liang, L.; Ning, Y.; Li, J.; Yin, W.; Che, R.; Li, Y. Dramatically Enhanced Electromagnetic Wave Absorption of Hierarchical CNT/Co/C Fiber Derived from Cotton and Metal-organic-framework. Carbon 2020, 1, 517–527.
10.1016/j.carbon.2020.01.073 Google Scholar
- 17 Guo, J.; Chen, Z.; Xu, X.; Li, X.; Liu, H.; Xi, S.; Abdul, W.; Wu, Q.; Zhang, P.; Xu, B.; Zhu, J.; Guo, Z. Enhanced Electromagnetic Wave Absorption of Engineered Epoxy Nanocomposites with the Assistance of Polyaniline Fillers. Adv. Compos. Hybrid. Mater. 2022, 5, 1769–1777.
- 18 Zheng, S.; Zeng, Z.; Qiao, J.; Liu, Y.; Liu, J. Facile Preparation of C/MnO/Co Nanocomposite Fibers for High-Performance Microwave Absorption. Compos. Part A Appl. Sci. Manuf. 2022, 155, 106814.
- 19 Tong, Z.; Liao, Z.; Liu, Y.; Ma, M.; Bi, Y.; Huang, W.; Ma, Y.; Qiao, M.; Wu, G. Hierarchical Fe3O4/Fe@C@MoS2 Core-shell Nanofibers for Efficient Microwave Absorption. Carbon 2021, 179, 646–654.
- 20 He, J.; Liu, Y.; Xu, L. Apparatus for Preparing Electro spun Nanofibers: A Comparative Review. Mater. Sci. Technol. 2010, 26, 1275–1287.
- 21 Li, X.; Li, H.; Zhang, Y.; Ding, Y.; Yang, W. Latest Progress in Preparation of Nanometer Fiber by Electrospinning. Chem. Mater. 2014, 42, 10–13.
- 22 IslamL, S.; Ang, B.; Andriyana, A.; Afifi, A. A Review on Fabrication of Nanofibers via Electrospinning and Their Applications. SN Appl. Sci. 2019, 1, 10.
- 23 Wan, L. Bubble Electrospinning and Bubble-spun Nanofibers. Recent Pat. Nanotechnol. 2020, 14, 10–13.
- 24 Zhao, S.; Huang, Y. Recent Advances on Electrospinning. J. Cellul. Sci. Technol. 2002, 10, 53–59.
- 25 Han, W.; Ma, J.; Chang, Q.; Xu, S.; Xu, X.; Long, Y. Recent Advance in Low-Voltage Electrospinning. MSE 2014, 32, 148–153.
- 26 Yang, D.; Li, E.; Guo, W.; Wang, H.; Xu, B. Research and Industrial Development of Nanofibers Prepared by Electrospinning. Mater. Rev. 2011, 25, 64–68.
- 27 Zhang, S.; Cheng, B.; Gao, Z.; Lan, D.; Zhao, Z.; Wei, F.; Zhu, Q.; Lu, X.; Wu, G. Two-dimensional Nanomaterials for High-efficiency Electromagnetic Wave Absorption: An Overview of Recent Advances and Prospects. J. Alloys Compd. 2022, 893, 162343.
- 28 Hou, T.; Jia, Z.; Wang, B.; Li, H.; Liu, X.; Bi, L.; Wu, G. MXene-based Accordion 2D Hybrid Structure with Co9S8/C/Ti3C2Tx as Efficient Electromagnetic Wave Absorber. Chem. Eng. J. 2021, 414, 128875.
- 29 Huang, L.; Li, J.; Wang, Z.; Li, Y.; He, X.; Yuan, Y. Microwave Absorption Enhancement of Porous C@CoFe2O4 Nanocomposites Derived from Eggshell Membrane. Carbon 2019, 143, 507–516.
- 30 Qin, M.; Zhang, L.; Zhao, X.; Wu, H. Defect Induced Polarization Loss in Multi-Shelled Spinel Hollow Spheres for Electromagnetic Wave Absorption Application. Adv. Sci. 2021, 8, 2004640.
- 31 Liu, P.; Zhang, L.; Yan, J.; Huang, Y.; Xia, L.; Guang, Z. Synthesis of Lightweight N-doped Graphene Foams with Open Reticular Structure for High-efficiency Electromagnetic Wave Absorption. Chem. Eng. J. 2019, 368, 285–298.
- 32 Miao, P.; Chen, J.; Chen, J.; Kong, J.; Chen, K. Review and Perspective of Tailorable Metal-Organic Framework for Enhancing Microwave Absorption. Chin. J. Chem. 2023, 41, 1080–1098.
- 33 Miao, P.; Qu, N.; Chen, W.; Wang, T.; Zhao, W.; Kong, J. A two-dimensional semi-conductive Cu-S metal-organic framework for broadband microwave absorption. Chem. Eng. J. 2022, 454, 140445.
- 34 Xing, R.; Xu, G.; Qu, N.; Zhou, R.; Yang, J.; Kong, J. 3D Printing of Liquid-Metal-in-Ceramic Metamaterials for High-Efficient Microwave Absorption. Adv. Funct. Mater. 2023, 2307499.
- 35 Zhang, F.; Cui, W.; Wang, B.; Xu, B.; Liu, X.; Liu, X.; Jia, Z.; Wu, G. Morphology-control synthesis of polyaniline decorative porous carbon with remarkable electromagnetic wave absorption capabilities. Compos. B. Eng. 2021, 204, 108491.
- 36 Li, Z.; Lin, H.; Ding, S.; Ling, H.; Wang, T.; Miao, Z.; Zhang, M.; Meng, A.; Li, Q. Synthesis and Enhanced Electromagnetic Wave Absorption Performances of Fe3O4@C Decorated Walnut Shell-Derived Porous Carbon. Carbon 2020, 167, 148–159.
- 37 Lu, Y.; Wang, Y.; Li, H.; Lin, Y.; Jiang, Z.; Xie, Z.; Kuang, Q.; Zheng, L. MOF-Derived Porous Co/C Nanocomposites with Excellent Electromagnetic Wave Absorption Properties. ACS Appl. Mater. Interfaces 2015, 7, 13604–13611.
- 38 Chen, J.; Yu, Z.; Li, C.; Lv, Y.; Hong, S.; Hu, P.; Liu, Y. Review of the Principles, Devices, Parameters, and Applications for Centrifugal Electrospinning. Macromol. Mater. Eng. 2022, 8, 307.
- 39 Cheng, L.; Peng, S.; Shi, M. Synthesis of ZnO Nanofibers by Electrospinning Method and Study of Its Electromagnetic Wave Absorption Property. Ceram. Int. 2015, 51, 36–39.
- 40 Huang, X.; Zhang, J.; Lai, M.; Sang, T. Preparation and Microwave Absorption Mechanisms of the NiZn Ferrite Nanofibers. J. Alloys Compd. 2015, 627, 367–373.
- 41 Huang, A.; Liu, F.; Cui, Z.; Wang, H.; Song, X.; Geng, L.; Wang, H.; Peng, X. Novel PTFE/CNT Composite Nanofiber Membranes with Enhanced Mechanical, Crystalline, Conductive, and Dielectric Properties Fabricated by Emulsion Electrospinning and Sintering. Compos. Sci. Technol. 2021, 214, 108980.
- 42 Wang, Z.; Zhao, L.; Wang, P.; Guo, L.; Yu, J. Low Material Density and High Microwave-Absorption Performance of Hollow Strontium Ferrite Nanofibers Prepared Via Coaxial Electrospinning. J. Alloys Compd. 2016, 687, 541–547.
- 43 Qiao, J.; Xu, D.; Lv, L.; Zhang, X.; Wang, F.; Liu, W.; Liu, J. Self-Assembled ZnO/Co Hybrid Nanotubes Prepared by Electrospinning for Lightweight and High-Performance Electromagnetic Wave Absorption. ACS Appl. Nano Mater. 2018, 1, 5297–5306.
- 44 Kong, L.; Qiao, J.; Yang, Y.; Zhang, X.; Wang, F.; Wang, Z.; Wu, L.; Liu, J. Flakes-Assembled Porous ZnO/Ni Hybrid Nanotubes for Efficient Electromagnetic Absorption. J. Alloys Compd. 2021, 881, 160575.
- 45 Bi, C.; Zhu, M.; Zhang, Q.; Li, Y.; Wang, H. Preparation and Properties of Electromagnetic Wave Absorption Materials BaTiO3/MWCNT and Derived PAN Hybrid Fibers. J. Inorg. Mater. 2010, 25, 829–834.
- 46 Yu, Q.; Ma, M.; Chen, P.; Wang, Q.; Lu, C.; Gao, Y.; Wang, R.; Chen, H. Enhanced Microwave Absorption Properties of Electrospun PEK-C Nanofibers Loaded with Fe3O4/CNTs Hybrid Nanoparticles. Polym. Eng. Sci. 2017, 57, 1186–1192.
- 47 Nakhaei, O.; Shahtahmassebi, N.; Roknabadi, M.; Behdani, M. Co-electrospinning Fabrication and Study of Structural and Electromagnetic Interference-shielding Effectiveness of TiO2/SiO2 Core-shell Nanofibers. Appl. Phys. A-Mater. 2016, 122, 5.
- 48 Jin, C.; Wu, Z.; Yang, C.; Wang, L.; Zhang, R.; Xu, H.; Che, R. Impedance Amelioration of Coaxial-electrospun TiO2@Fe/C@TiO2 Vesicular Carbon Microtubes with Dielectric-magnetic Synergy Toward Highly Efficient Microwave Absorption. Chem. Eng. J. 2022, 433, 133640.
- 49 Zhang, X.; Qiao, J.; Jiang, Y.; Wang, F.; Tian, X.; Wang, Z.; Wu, L.; Liu, W.; Liu, J. Carbon-Based MOF Derivatives: Emerging Efficient Electromagnetic Wave Absorption Agents. Nano-Micro Lett. 2021, 13, 1.
- 50 Yin, Y.; Liu, X.; Wei, X.; Yu, R.; Shui, J. Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber. ACS Appl. Mater. Interfaces 2016, 8, 34686–34698.
- 51 Xu, D.; Yang, Y.; Lyu, L.; Ouyang, A.; Liu, W.; Wang, Z.; Wu, L.; Yang, F.; Liu, J.; Wang, F. One-dimensional MnO@N-doped Carbon Nanotubes as Robust Dielectric Loss Electromagnetic Wave Absorbers. Chem. Eng. J. 2021, 410, 128295.
- 52 Abdalla, I.; Shen, J.; Yu, J.; Li, Z.; Ding, B. Co3O4/carbon Composite Nanofibrous Membrane Enabled High-efficiency Electromagnetic Wave Absorption. Sci. Rep. 2018, 8, 12402.
- 53 Zhao, Z.; Zhou, X.; Kou, K.; Wu, H. PVP-assisted Transformation of ZIF-67 into Cobalt Layered Double Hydroxide/carbon Fiber as Electromagnetic Wave Absorber. Carbon 2021, 173, 80–90.
- 54 Deng, G.; Yang, Y.; Zhou, Q.; Lei, Y.; Yue, Y.; Yang, T. Lightweight and Broadband Electromagnetic Wave Absorbing Foamed Cement-based Composites Incorporated with Hybrid Dielectric Fibers. Constr. Build. Mater. 2022, 327, 126931.
- 55 Wei, Y.; Zhu, J.; Lin, J.; Shen, Y.; Jiang, T.; Li, Q.; Wang, H.; La, P. Progress of Carbon Micro/Nanofiber Composite Materials for Microwave Absorption. Mater. Rev. 2021, 35, 15205–15211.
- 56 Liu, Y.; Zeng, Z.; Zheng, S.; Qiao, J.; Liu, W.; Wu, L.; Liu, J. Facile Manufacturing of Ni/MnO Nanoparticle Embedded Carbon Nanocomposite Fibers for Electromagnetic Wave Absorption. Compos. B. Eng. 2022, 109800.
- 57 Meng, X.; Qiao, J.; Zheng, S.; Tian, H.; Li, B.; Liu, J.; Wu, L.; Wang, Z.; Wang, F. Ternary Nickel/Molybdenum Dioxide/Carbon composited nanofibers for broadband and strong electromagnetic wave absorption. Chem. Eng. J. 2023, 457, 141241.
- 58 Wang, P.; Li, Z.; Cheng, L.; Ye, F.; Zhang, L. SiC/rGO Core-Shell Nanowire as a Lightweight, Highly Efficient Gigahertz Electromagnetic Wave Absorber. ACS Appl. Electron. Mater. 2020, 2, 473–482.
- 59 Liu, J.; Feng, Y.; Liu, C.; Tong, Y.; Sun, H.; Peng, H.; Wu, S.; Lu, J.; Gong, H.; Guo, X.; Li, J. Novel SiBCN Composite Fibers with Broadband and Strong Electromagnetic Wave Absorption Performance. J. Alloys Compd. 2022, 912, 165493.
- 60 An, Z.; Ye, C.; Zhang, R.; Zhou, P. Flexible and Recoverable SiC Nanofiber Aerogels for Electromagnetic Wave Absorption. Ceram. Int. 2019, 45, 22793–22801.
- 61
Lee, Y.-I.; Seong, G. H.; Lee, K.-M.; Choa, Y.-H. Synthesis and Electromagnetic Wave Absorbing Property of BaTiO3@Fe Nanofibers with Core-Shell Structure. J. Kor. Powd. Met. Inst. 2016, 23, 38–42.
10.4150/KPMI.2016.23.1.38 Google Scholar
- 62 Huo, Y.; Tan, Y.; Zhao, K.; Lu, Z.; Zhong, L.; Tang, Y. Enhanced Electromagnetic Wave Absorption Properties of Ni Magnetic Coating-functionalized SiC/C Nanofibers Synthesized by Electrospinning and Magnetron Sputtering Technology. Chem. Phys. Lett. 2021, 763, 138230.
- 63 Zhang, Z.; Wang, G.; Gu, W.; Zhao, Y.; Tang, S.; Ji, G. A Breathable and Flexible Fiber Cloth Based on Cellulose/Polyaniline Cellular Membrane for Microwave Shielding and Absorbing Applications. J. Colloid Interface Sci. 2022, 605, 193–203.
- 64 Feng, Y.; Zhang, L.; Li, Z.; Lin, M.; Pan, Y.; Zhao, X.; Luo, Z.; Guo, H.; Chen, X.; Cheng, Z. Ultralight reduced graphene oxide/SiO2-C nanofibers composite aerogel decorated with Li0.35Zn0.3Fe2.35O4 nanoparticles with a three-dimensional bridging network for efficient electromagnetic wave absorption. Carbon 2023, 215, 118435.