Semicrystalline Unfused Polymer Donors with Backbone Halogenation toward Cost-Effective Organic Solar Cells†
Yuxin Kong
School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054 China
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorShijie Ju
School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Hongmei Qin
School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorMin Hun Jee
Department of Chemistry, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorSimeng Xia
School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054 China
Search for more papers by this authorJiaqi Ren
School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054 China
Search for more papers by this authorChao Gao
Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi, 710065 China
Search for more papers by this authorJianyu Yuan
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Wenyan Su
School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Han Young Woo
Department of Chemistry, Korea University, Seoul, 02841 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yuxiang Li
School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorYuxin Kong
School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054 China
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorShijie Ju
School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Hongmei Qin
School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorMin Hun Jee
Department of Chemistry, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorSimeng Xia
School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054 China
Search for more papers by this authorJiaqi Ren
School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054 China
Search for more papers by this authorChao Gao
Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi, 710065 China
Search for more papers by this authorJianyu Yuan
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Wenyan Su
School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Han Young Woo
Department of Chemistry, Korea University, Seoul, 02841 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yuxiang Li
School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorDedicated to the Special Issue of Organic Photovoltaic.
Comprehensive Summary
Developing novel unfused building blocks with simple synthesis and low cost is essential to advance and enrich cost-effective polymer donors; however, it remains a challenge due to the lack of efficient molecular strategies. Herein, a class of low-cost and fully unfused polymer donors with precisely regulated backbone planarity via halogenation was designed and synthesized, namely PDTBTBz-2H, PDTBTBz-2F, and PDTBTBz-2Cl. These polymer donors possess a four-step synthesis route with over 80% yield from cheap raw chemicals comparable to existing low-cost polymer donors, such as PTQ10. Benefitting from the planar backbone via incorporating the F···S non-covalent interactions, PDTBTBz-2F exhibits more robust J-type aggregation in solution and a long-ranged molecular stacking in film relative to PDTBTBz-2H and PDTBTBz-2Cl. Moreover, the systematical study of PDTBTBz-based organic solar cells (OSCs) reveals the close relationship between optimized molecular self-assembly and charge separation/transport regarding backbone halogenation when paired with the non-fullerene acceptor (Y6-BO-4F). As a result, the photovoltaic devices based on semicrystalline PDTBTBz-2F achieved a promising power conversion efficiency (PCE) of 12.37%. Our work highlighted the influence of backbone halogenation on the molecular self-assembly properties and a potential unfused backbone motif for further developing cost-effective OSCs.
Supporting Information
Filename | Description |
---|---|
cjoc202300547-sup-0001-supinfo.pdfPDF document, 1.6 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Feng, K.; Wu, Z.; Su, M.; Ma, S.; Shi, Y.; Yang, K.; Wang, Y.; Zhang, Y.; Sun, W.; Cheng, X.; Huang, L.; Min, J.; Woo, H. Y.; Guo, X. Highly Efficient Ternary All-Polymer Solar Cells with Enhanced Stability. Adv. Funct. Mater. 2020, 31, 2008494.
- 2 Long, X.; Ding, Z.; Dou, C.; Zhang, J.; Liu, J.; Wang, L. Polymer Acceptor Based on Double B←N Bridged Bipyridine (BNBP) Unit for High-Efficiency All-Polymer Solar Cells. Adv. Mater. 2016, 28, 6504–6058.
- 3 Du, J. Q.; Hu, K.; Meng, L.; Angunawela, I.; Zhang, J. Y.; Qin, S. C.; Liebman-Pelaez, A.; Zhu, C. H.; Zhang, Z. J.; Ade, H.; Li, Y. F. High- Performance All-Polymer Solar Cells: Synthesis of Polymer Acceptor by a Random Ternary Copolymerization Strategy. Angew. Chem. Int. Ed. 2020, 59, 15181–15185.
- 4 Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. A High-Mobility Electron-Transporting Polymer for Printed Transistors. Nature 2009, 457, 679–686.
- 5 Wang, Z.; Peng, Z.; Xiao, Z.; Seyitliyev, D.; Gundogdu, K.; Ding, L.; Ade, H. Thermodynamic Properties and Molecular Packing Explain Performance and Processing Procedures of Three D18:NFA Organic Solar Cells. Adv. Mater. 2020, 32, 2005386.
- 6 Zhang, L.; Zhang, Z.; Liang, H.; Guo, X.; Zhang, M. A Non-Halogenated Polymer Donor Based on Imide Unit for Organic Solar Cells with Efficiency Nearly 16%. Chin. J. Chem. 2023, 41, 2095–2102.
- 7 Wu, Q.; Yu, Y.; Xia, X.; Gao, Y.; Wang, T.; Sun, R.; Guo, J.; Wang, S.; Xie, G.; Lu, X.; Zhou, E.; Min, J. High-Performance Organic Photovoltaic Modules Using Eco-Friendly Solvents for Various Indoor Application Scenarios. Joule 2022, 6, 2138–2151.
- 8 Kong, Y.; Li, Y.; Yuan, J.; Ding, L. Polymerizing Small Molecular Acceptors for Efficient All-Polymer Solar Cells. InfoMat 2022, 4, e12271.
- 9 Fan, Q.; Ma, R.; Yang, J.; Gao, J.; Bai, H.; Su, W.; Liang, Z.; Wu, Y.; Tang, L.; Li, Y.; Wu, Q.; Wang, K.; Yan, L.; Zhang, R.; Gao, F.; Li, G.; Ma, W. Unidirectional Sidechain Engineering to Construct Dual-Asymmetric Acceptors for 19.23% Efficiency Organic Solar Cells with Low Energy Loss and Efficient Charge Transfer. Angew. Chem. Int. Ed. 2023, e202308307.
- 10 Fu, H.; Li, Y.; Yu, J.; Wu, Z.; Fan, Q.; Lin, F.; Han, Y.; Gao, F.; Zhu, Z.; Jen, A. K.-Y. High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor. J. Am. Chem. Soc. 2021, 143, 2665–2670.
- 11 Zhang, M. J.; Guo, X.; Ma, W.; Ade, H.; Hou, J. H. A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance. Adv. Mater. 2015, 27, 4655–4660.
- 12 Zheng, Z.; Yao, H.; Ye, L.; Xu, Y.; Zhang, S.; Hou, J. PBDB-T and Its Derivatives: A Family of Polymer Donors Enables over 17% Efficiency in Organic Photovoltaics. Mater. Today 2020, 35, 115–130.
- 13 Fan, B.; Li, M.; Zhang, D.; Zhong, W.; Ying, L.; Zeng, Z.; An, K.; Huang, Z.; Shi, L.; Bazan, G. C.; Huang, F.; Cao, Y. Tailoring Regioisomeric Structures of π-Conjugated Polymers Containing Monofluorinated Π-Bridges for Highly Efficient Polymer Solar Cells. ACS Energy Lett. 2020, 5, 2087–2094.
- 14 Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J. Single-Junction Organic Photovoltaic Cell with 19% Efficiency. Adv. Mater. 2021, 33, e2102420.
- 15 You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G.; Yang, Y. A Polymer Tandem Solar Cell with 10.6% Power Conversion Efficiency. Nat. Commun. 2013, 4, 1446.
- 16 Sun, C.; Pan, F.; Bin, H.; Zhang, J.; Xue, L.; Qiu, B.; Wei, Z.; Zhang, Z. G.; Li, Y. A Low Cost and High Performance Polymer Donor Material for Polymer Solar Cells. Nat. Commun. 2018, 9, 743.
- 17 Ren, J.; Bi, P.; Zhang, J.; Liu, J.; Wang, J.; Xu, Y.; Wei, Z.; Zhang, S.; Hou, J. Molecular Design Revitalizes the Low-Cost PTV-Polymer for Highly Efficient Organic Solar Cells. Natl. Sci. Rev. 2021, 8, nwab031.
- 18 Shen, Q.; He, C.; Li, S.; Zuo, L.; Shi, M.; Chen, H. Design of Non-Fused Ring Acceptors toward High-Performance, Stable, and Low-Cost Organic Photovoltaics. Acc. Chem. Res. 2022, 3, 644–657.
- 19 Wen, T. J.; Liu, Z. X.; Chen, Z.; Zhou, J.; Shen, Z.; Xiao, Y.; Lu, X.; Xie, Z.; Zhu, H.; Li, C. Z.; Chen, H. Simple Non-Fused Electron Acceptors Leading to Efficient Organic Photovoltaics. Angew Chem. Int. Ed. 2021, 60, 12964–12970.
- 20 Wu, Y.; Zheng, Y.; Yang, H.; Sun, C.; Dong, Y.; Cui, C.; Yan, H.; Li, Y. Rationally Pairing Photoactive Materials for High-Performance Polymer Solar Cells with Efficiency of 16.53%. Sci. China Chem. 2019, 63, 265–271.
- 21 Li, Y.; Jia, Z.; Zhang, Q.; Wu, Z.; Qin, H.; Yang, J.; Wen, S.; Woo, H. Y.; Ma, W.; Yang, R.; Yuan, J. Toward Efficient All-Polymer Solar Cells via Halogenation on Polymer Acceptors. ACS Appl. Mater. Interfaces 2020, 12, 33028–33038.
- 22 Wu, Q.; Wang, W.; Wu, Y.; Sun, R.; Guo, J.; Shi, M.; Min, J. Tailoring Polymer Acceptors by Electron Linkers for Achieving Efficient and Stable All-Polymer Solar Cells. Natl. Sci. Rev. 2022, 9, nwab151.
- 23 Lee, W.; Kim, G.-H.; Ko, S.-J.; Yum, S.; Hwang, S.; Cho, S.; Shin, Y.-H.; Kim, J. Y.; Woo, H. Y. Semicrystalline D-A Copolymers with Different Chain Curvature for Applications in Polymer Optoelectronic Devices. Macromolecules 2014, 47, 1604–1612.
- 24 Li, Y.; Fu, H.; Wu, Z.; Wu, X.; Wang, M.; Qin, H.; Lin, F.; Woo, H. Y.; Jen, A. K. Regulating the Aggregation of Unfused Non-Fullerene Acceptors Via Molecular Engineering Towards Efficient Polymer Solar Cells. ChemSusChem 2021, 14, 3579–3589.
- 25 Kang, H.; Uddin, M. A.; Lee, C.; Kim, K. H.; Nguyen, T. L.; Lee, W.; Li, Y.; Wang, C.; Woo, H. Y.; Kim, B. J. Determining the Role of Polymer Molecular Weight for High-Performance All-Polymer Solar Cells: Its Effect on Polymer Aggregation and Phase Separation. J. Am. Chem. Soc. 2015, 137, 2359–2365.
- 26 Li, Y.; Wang, M.; Zhang, Q.; Wu, Z.; Lim, H.; Wang, Y.; Qin, H.; Yang, J.; Gao, C.; Young Woo, H.; Yuan, J. Fine-Tuned Crystallinity of Polymerized Non-Fullerene Acceptor via Molecular Engineering Towards Efficient All-Polymer Solar Cell. Chem. Eng. J. 2021, 428, 131232.
- 27 Yin, B.; Pang, S.; Chen, Z.; Deng, W.; Liu, Z.; Duan, C.; Huang, F.; Cao, Y. A Structurally Simple Linear Conjugated Polymer toward Practical Application of Organic Solar Cells. Energy Environ. Sci. 2022, 15, 4789–4797.
- 28 Xiao, J.; Jia, X.; Duan, C.; Huang, F.; Yip, H. L.; Cao, Y. Surpassing 13% Efficiency for Polythiophene Organic Solar Cells Processed from Nonhalogenated Solvent. Adv. Mater. 2021, 33, 2008158.
- 29 Li, Y.; Lee, D. H.; Lee, J.; Nguyen, T. L.; Hwang, S.; Park, M. J.; Choi, D. H.; Woo, H. Y. Two Regioisomeric π-Conjugated Small Molecules: Synthesis, Photophysical, Packing, and Optoelectronic Properties. Adv. Funct. Mater. 2017, 27, 1701942.
- 30 Yang, W.; Wang, W.; Wang, Y.; Sun, R.; Guo, J.; Li, H.; Shi, M.; Guo, J.; Wu, Y.; Wang, T.; Lu, G.; Brabec, C. J.; Li, Y.; Min, J. Balancing the Efficiency, Stability, and Cost Potential for Organic Solar Cells via a New Figure of Merit. Joule 2021, 5, 1209–1230.
- 31 Ko, S.-J.; Hoang, Q. V.; Song, C. E.; Uddin, M. A.; Lim, E.; Park, S. Y.; Lee, B. H.; Song, S.; Moon, S.-J.; Hwang, S.; Morin, P.-O.; Leclerc, M.; Su, G. M.; Chabinyc, M. L.; Woo, H. Y.; Shin, W. S.; Kim, J. Y. High-Efficiency Photovoltaic Cells with Wide Optical Band Gap Polymers Based on Fluorinated Phenylene-Alkoxybenzothiadiazole. Energy Environ. Sci. 2017, 10, 1443–1455.
- 32 Nguyen, T. L.; Choi, H.; Ko, S. J.; Uddin, M. A.; Walker, B.; Yum, S.; Jeong, J. E.; Yun, M. H.; Shin, T. J.; Hwang, S.; Kim, J. Y.; Woo, H. Y. Semi-Crystalline Photovoltaic Polymers with Efficiency Exceeding 9% in a ∼300 nm Thick Conventional Single-Cell Device. Energy Environ. Sci. 2014, 7, 3040–3051.
- 33 Xia, Z.; Zhang, J.; Gao, X.; Song, W.; Ge, J.; Xie, L.; Zhang, X.; Liu, Z.; Ge, Z. Fine-Tuning the Dipole Moment of Asymmetric Non-Fullerene Acceptors Enabling Efficient and Stable Organic Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 23983–23992.
- 34 Zhang, Y.; He, Y.; Zeng, L.; Luer, L.; Deng, W.; Chen, Y.; Zhou, J.; Wang, Z.; Brabec, C. J.; Wu, H.; Xie, Z.; Duan, C. Unraveling the Role of Non-Fullerene Acceptor with High Dielectric Constant in Organic Solar Cells. Small 2023, 19, e2302314.
- 35 Qin, H.; Xia, S.; Sun, D.; Wu, Z.; Wang, Y.; Ran, Y.; Lu, G.; Woo, H. Y.; Zhao, B.; Gao, C.; Li, Y. Optimal Bulk Morphology via Side-Chain Engineering on Non-Fullerene Acceptor for Efficient Organic Solar Cells. J. Mater. Chem. C 2022, 10, 16397–16406.
- 36 Wu, B.; Kong, Y.; Zhu, Q.; Zhang, S.; Lin, B.; Zhao, H.; Xue, J.; Seibt, S.; Zhou, K.; Li, Y.; Ma, W. Limiting Phase Separation via Halogen-Free Solvent Slot-Die Processing Enables Highly Efficient and Eco-Friendly All-Polymer Solar Cells. J. Mater. Chem. A 2023, 11, 3028–3037.
- 37 Yuan, X.; Chen, H.; Kim, S.; Chen, Y.; Zhang, Y.; Yang, M.; Chen, Z.; Yang, C.; Wu, H.; Gao, X.; Liu, Z.; Duan, C. Benzo[1,2-B:4,5-B′] Difuran-Based Polymer for Organic Solar Cells with 17.5% Efficiency via Halogenation-Mediated Aggregation Control. Adv. Energy. Mater. 2023, 13, 2204394.
- 38 Yu, L.; Xiao, H.; Shi, Y.; Guo, X.; Xia, X.; Lu, X.; Zhang, M. π-Extended End Groups Enable High-Performance All-Polymer Solar Cells with near-Infrared Absorption. Chin. J. Chem. 2023, 41, 3261–3267.
- 39 Wei, Q.; Liang, S.; Qiu, B.; Liu, W.; Xu, X.; Lu, X.; Fu, Y.; Yuan, J.; Zou, Y. Synergetic Alkoxy Side-Chain and Chlorine-Contained End Group Strategy toward High Performance Ultra-Narrow Bandgap Small Molecule Acceptors. Chin. J. Chem. 2023, 41, 2664–2670.