Synthesis of Long-Chain Oligomeric Donor and Acceptors via Direct Arylation for Organic Solar Cells†
Yu Wu
Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000 China
These authors contributed equally to this work.
Search for more papers by this authorXin-Yu He
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorXu-Min Huang
Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000 China
Search for more papers by this authorLing-Jun Yang
Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000 China
Search for more papers by this authorPeng Liu
Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000 China
Search for more papers by this authorNa Chen
Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000 China
Search for more papers by this authorCorresponding Author
Chang-Zhi Li
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Shi-Yong Liu
Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000 China
E-mail: [email protected]; [email protected]Search for more papers by this authorYu Wu
Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000 China
These authors contributed equally to this work.
Search for more papers by this authorXin-Yu He
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorXu-Min Huang
Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000 China
Search for more papers by this authorLing-Jun Yang
Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000 China
Search for more papers by this authorPeng Liu
Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000 China
Search for more papers by this authorNa Chen
Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000 China
Search for more papers by this authorCorresponding Author
Chang-Zhi Li
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Shi-Yong Liu
Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000 China
E-mail: [email protected]; [email protected]Search for more papers by this authorDedicated to the Special Issue of Organic Photovoltaic.
Comprehensive Summary
The rapid synthesis of structurally complicated electron donors & acceptors still remains a major challenge in organic solar cells (OSC). In this work, we developed a highly efficient strategy to access long-chain oligomeric donor and acceptors for OSC applications. A series of cyclopentadithiophene (CPDT) and benzothiadiazole (BT)-based π-conjugated oligomers, i.e., three oligomeric acceptors (BTDT)n-IC (n = 1—3) and one long-chain oligomeric donor (BTDT)4-RD, are facilely synthesized by an atom- and step-economical, and labor-saving direct C—H arylation (DACH) reaction (i.e., C—H/C—Br cross coupling). Note that (BTDT)4-RD involving five CPDT, four BT and two rhodamine (RD) building blocks is the longest oligomeric donor in the fullerene-free OSC devices ever reported. The dependence of the structure-property-performance correlation of (BTDT)n-IC (n = 1—3) and (BTDT)4-RD on the π-conjugation lengths is thoroughly investigated by opto-electrochemical measurements, bulk heterojunction (BHJ) OSC devices and microscopies. The (BTDT)1-IC:PBDB-T and (BTDT)4-RD:Y6 BHJs achieve power conversion efficiencies of 9.14% and 4.51%, respectively. Our findings demonstrate that DACH reaction is a powerful tool to tune the opto-electronic properties and device performances by regulating the lengths of π-conjugated oligomers with varied numbers of repeating units.
Supporting Information
Filename | Description |
---|---|
cjoc202300521-sup-0001-supinfo.pdfPDF document, 3.8 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photon. 2012, 6, 153–161.
- 2 Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chem. Rev. 2015, 115, 12666–12731.
- 3 Cui, C.; Li, Y. High-performance conjugated polymer donor materials for polymer solar cells with narrow-bandgap nonfullerene acceptors. Energy Environ. Sci. 2019, 12, 3225–3246.
- 4 Li, W.; Liu, D.; Wang, T. Stability of Non-Fullerene Electron Acceptors and Their Photovoltaic Devices. Adv. Funct. Mater. 2021, 31, 2104552.
- 5 Shen, H.; Ren, Y.; Li, J.; Xu, Y.; Han, C.; Zou, W.; Xu, H.; Sun, Y.; Kan, Y.; Gao, K. Enhanced Performance via π-Bridge Alteration of Porphyrin-Based Donors for All-Small-Molecule Organic Solar Cells. Chin. J. Chem. 2023, 41, 644–650
- 6 Liu, H.; Yu, M.-H.; Lee, C.-C.; Yu, X.; Li, Y.; Zhu, Z.; Chueh, C.-C.; Li, Z.; Jen, A. K.-Y. Technical Challenges and Perspectives for the Commercialization of Solution-Processable Solar Cells. Adv. Mater. Technol. 2021, 6, 2000960.
- 7 Wei, Y.; Chen, Z.; Lu, G.; Yu, N.; Li, C.; Gao, J.; Gu, X.; Hao, X.; Lu, G.; Tang, Z.; Zhang, J.; Wei, Z.; Zhang, X.; Huang, H. Binary Organic Solar Cells Breaking 19% via Manipulating the Vertical Component Distribution. Adv. Mater. 2022, 34, 2204718.
- 8 Doumon, N. Y.; Yang, L.; Rosei, F. Ternary organic solar cells: A review of the role of the third element. Nano Energy 2022, 94, 106905.
- 9 Liu, H.; Li, Y.; Xu, S.; Zhou, Y.; Li, Z. Emerging Chemistry in Enhancing the Chemical and Photochemical Stabilities of Fused-Ring Electron Acceptors in Organic Solar Cells. Adv. Funct. Mater. 2021, 31, 2106735.
- 10 Ma, L.; Zhang, S.; Hou, J. Crystal structures in state-of-the-art non- fullerene electron acceptors. J. Mater. Chem. A 2023, 11, 481–494.
- 11 Speller, E. M.; Clarke, A. J.; Luke, J.; Lee, H. K. H.; Durrant, J. R.; Li, N.; Wang, T.; Wong, H. C.; Kim, J. S.; Tsoi, W. C.; Li, Z. From fullerene acceptors to non-fullerene acceptors: prospects and challenges in the stability of organic solar cells. acceptors. J. Mater. Chem. A 2019, 7, 23361–23377.
- 12 Hou, J.; Inganas, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128.
- 13 Eastham, N. D.; Logsdon, J. L.; Manley, E. F.; Aldrich, T. J.; Leonardi, M. J.; Wang, G.; Powers-Riggs, N. E.; Young, R. M.; Chen, L. X.; Wasielewski, M. R.; Melkonyan, F. S.; Chang, R. P. H.; Marks, T. Hole-Transfer Dependence on Blend Morphology and Energy Level Alignment in Polymer: ITIC Photovoltaic Materials. Adv. Mater. 2018, 30, 1704263.
- 14 Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1145.
- 15 Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; He, C.; Wei, Z.; Gao, F.; Hou, J. Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Adv. Mater. 2020, 32, 1908205.
- 16 Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; Xie, Z.; Yi, Y.; Yan, H.; Gao, F.; Liu, F.; Sun, Y. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605–613.
- 17 Zhu, C.; Yuan, J.; Cai, F.; Meng, L.; Zhang, H.; Chen, H.; Li, J.; Qiu, B.; Peng, H.; Chen, S.; Hu, Y.; Yang, C.; Gao, F.; Zou, Y.; Li, Y. Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energy Environ. Sci. 2020, 13, 2459–2466.
- 18 Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganas, O.; Gao, F.; Hou, J. Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Adv. Mater. 2016, 28, 4734–4739.
- 19 Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J. A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance. Adv. Mater. 2015, 27, 4655-4660.
- 20 Ma, R.; Liu, T.; Luo, Z.; Guo, Q.; Xiao, Y.; Chen, Y.; Li, X.; Luo, S.; Lu, X.; Zhang, M.; Li, Y.; Yan, H. Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Sci. China Chem. 2020, 63, 325–330.
- 21 Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.
- 22 Zeng, A.; Ma, X.; Pan, M.; Chen, Y.; Ma, R.; Zhao, H.; Zhang, J.; Kim, H.-K.; Shang, A.; Luo, S.; Angunawela, I.-C.; Chang, Y.; Qi, Z.; Sun, H.; Lai, J. Y. L.; Ade, H.; Ma, W.; Zhang, F.; Yan, H. A Chlorinated Donor Polymer Achieving High-Performance Organic Solar Cells with a Wide Range of Polymer Molecular Weight. Adv. Funct. Mater. 2021, 31, 2102413.
- 23 Wang, Y.; Fan, Q.; Wang, Y.; Fang, J.; Liu, Q.; Zhu, L.; Qiu, J.; Guo, X.; Liu, F.; Su, W.; Zhang, M. Modulating Crystallinity and Miscibility via Side-chain Variation Enable High Performance All-Small-Molecule Organic Solar Cells. Chin. J. Chem. 2021, 39, 2147–2153.
- 24 Wang, J.; Zhan, X. From Perylene Diimide Polymers to Fused-Ring Electron Acceptors: A 15-Year Exploration Journey of Nonfullerene Acceptors. Chin. J. Chem. 2022, 40, 1592–1607.
- 25 Shen, Q.; He, C.; Li, S.; Zuo, L.; Shi, M.; Chen, H. Design of Non-fused Ring Acceptors toward High-Performance, Stable, and Low-Cost Organic Photovoltaics. Acc. Mater. Res. 2022, 3, 644–657.
- 26 Chen, Y. N.; Li, M.; Wang, Y.; Wang, J.; Zhang, M.; Zhou, Y.; Yang, J.; Liu, Y.; Liu, F.; Tang, Z.; Bao, Q.; Bo, Z. A Fully Non-fused Ring Acceptor with Planar Backbone and Near-IR Absorption for High Performance Polymer Solar Cells. Angew. Chem. Int. Ed. 2020, 59, 22714–22720.
- 27 Xu, Y.; Wang, J.; Yao, H.; Bi, P.; Zhang, T.; Xu, J.; Hou, J. An Asymmetric Non-fullerene Acceptor with Low Energy Loss and High Photovoltaic Efficiency. Chin. J. Chem. 2023, 41, 1045–1050.
- 28 Li, Y.; Yu, J.; Zhou, Y.; Li, Z. Molecular Insights of Non-fused Ring Acceptors for High-Performance Non-fullerene Organic Solar Cells. Chem. Eur. J. 2022, 28, e202201675.
- 29 Zhang, X.; Qin, L.; Yu, J.; Li, Y.; Wei, Y.; Liu, X.; Lu, X.; Gao, F.; Huang, H. High-Performance Noncovalently Fused-Ring Electron Acceptors for Organic Solar Cells Enabled by Noncovalent Intramolecular Interactions and End-Group Engineering. Angew. Chem. Int. Ed. 2021, 60, 12475–12481.
- 30 Huang, H.; Yang, L.; Facchetti, A.; Marks, T. J. Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks. Chem. Rev. 2017, 117, 10291–10318.
- 31 Wang, X.; Lu, H.; Liu, Y.; Zhang, A.; Yu, N.; Wang, H.; Li, S.; Zhou, Y.; Xu, X.; Tang, Z.; Bo, Z. Simple Nonfused Ring Electron Acceptors with 3D Network Packing Structure Boosting the Efficiency of Organic Solar Cells to 15.44%. Adv. Energy Mater. 2021, 11, 2102591.
- 32 Yu, Z. P.; Liu, Z. X.; Chen, F. X.; Qin, R.; Lau, T. K.; Yin, J. L.; Kong, X.; Lu, X.; Shi, M.; Li, C. X.; Chen, H. Simple non-fused electron acceptors for efficient and stable organic solar cells. Nat. Commun. 2019, 10, 2152.
- 33 Liu, X.; Wei, Y.; Zhang, X.; Qin, L.; Wei, Z.; Huang, H. An A-D-A′-D-A type unfused nonfullerene acceptor for organic solar cells with approaching 14% efficiency. Sci. China Chem. 2020, 64, 228–231.
- 34 Jia, T.; Zhang, J.; Zhong, W.; Liang, Y.; Zhang, K.; Dong, S.; Ying, L.; Wang, X.; Huang, F.; Cao, Y. 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy 2020, 72, 104718.
- 35 Li, Z.; Yao, H.; Ma, L.; Wang, J.; Bi, Z.; Wang, S.; Seibt, S.; Zhang, T.; Xu, Y.; Ren, J.; Xiao, Y.; An, C.; Ma, W.; Hou, J. Tuning the Intermolecular Electrostatic Interaction toward High-Efficiency and Low-Cost Organic Solar Cells. Adv. Funct. Mater. 2023, 33, 2300202.
- 36 Lin, Y.; Li, T.; Zhao, F.; Han, L.; Wang, Z.; Wu, Y.; He, Q.; Wang, J.; Huo, L.; Sun, Y.; Wang, C.; Ma, W.; Zhan, X. Structure Evolution of Oligomer Fused-Ring Electron Acceptors toward High Efficiency of As-Cast Polymer Solar Cells. Adv. Energy Mater. 2016, 6, 1600854.
- 37 Liu, H.; Tao, Y. D.; Wang, L. H.; Ye, D. N.; Huang, X. M.; Chen, N.; Li, C.-Z.; Liu, S.-Y. C-H Direct Arylation: A Robust Tool to Tailor the pi-Conjugation Lengths of Non-Fullerene Acceptors. ChemSusChem 2022, 15, e202200034.
- 38 Zhang, X.; Feng, L.; Zhang, K.; Liu, S.-Y. Carbazole and Diketopyrrolopyrrole-Based D-A π-Conjugated Oligomers Accessed via Direct C–H Arylation for Opto-Electronic Property and Performance Study. Molecules 2022, 27, 9031.
- 39 Wang, L.-H.; Chen, X.-J.; Ye, D.-N.; Liu, H.; Chen, Y.; Zhong, A.-G.; Li, C.-Z.; Liu, S.-Y. Pot- and atom-economic synthesis of oligomeric non-fullerene acceptors via C–H direct arylation. Polym. Chem. 2022, 13, 2351–2361.
- 40 Lin, Y.; Zhan, X. Oligomer Molecules for Efficient Organic Photovoltaics. Acc. Chem. Res. 2016, 49, 175–183.
- 41 Gu, X.; Zhang, X.; Huang, H. Oligomerized Fused-Ring Electron Acceptors for Efficient and Stable Organic Solar Cells. Angew. Chem. Int. Ed. 2023, e202308496.
- 42 Dai, S.; Li, T.; Wang, W.; Xiao, Y.; Lau, T. K.; Li, Z.; Liu, K.; Lu, X.; Zhan, X. Enhancing the Performance of Polymer Solar Cells via Core Engineering of NIR-Absorbing Electron Acceptors. Adv. Mater. 2018, 30, 1706571.
- 43 Wang, W.; Lu, H.; Chen, Z.; Jia, B.; Li, K.; Ma, W.; Zhan, X.; High-performance NIR-sensitive fused tetrathienoacene electron acceptors. J. Mater. Chem. A 2020, 8, 3011–3017.
- 44 Liang, Y.; Zhang, D.; Wu, Z.; Jia, T.; Lüer, L.; Tang, H.; Hong, L.; Zhang, J.; Zhang, K.; Brabec, C. J.; Li, N.; Huang, F. Organic solar cells using oligomer acceptors for improved stability and efficiency. Nat. Energy 2022, 7, 1180–1190.
- 45 Liu, H.; Chen, Y.; Chen, N.; Liu, S.-Y. Stepwise extended π-conjugation lengths of chlorinated oligomeric non-fullerene acceptor accessed via direct C−H arylation. Acta Polym. Sin. 2023, 54, 1122.
- 46 Wang, J.-L.; Liu, K.-K.; Yan, J.; Wu, Z.; Liu, F.; Xiao, F.; Chang, Z.-F.; Wu, H.-B.; Cao, Y.; Russell, T. P. Series of Multifluorine Substituted Oligomers for Organic Solar Cells with Efficiency over 9% and Fill Factor of 0.77 by Combination Thermal and Solvent Vapor Annealing. J. Am. Chem. Soc. 2016, 138, 7687–7697.
- 47 Kan, B.; Li, M.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Long, G.; Yang, X.; Feng, H.; Zuo, Y.; Zhang, M.; Huang, F.; Cao, Y.; Russel, T. P.; Chen, Y. A Series of Simple Oligomer-like Small Molecules Based on Oligothiophenes for Solution-Processed Solar Cells with High Efficiency. J. Am. Chem. Soc. 2015, 137, 3886–3893.
- 48 Zhou, C.; Liang, Y.; Liu, F.; Sun, C.; Huang, X.; Xie, Z.; Huang, F.; Roncali, J.; Russell, T. P.; Cao, Y. Chain length dependence of the photovoltaic properties of monodisperse donor–acceptor oligomers as model compounds of polydisperse low band gap polymers. Adv. Funct. Mater. 2014, 24, 7538–7547.
- 49 Liu, S.-Y.; Liu, H.; Shen, Z.-Q.; Huang, W.-Y.; Zhong, A.-G.; Wen, H.-R.; Atom- and step-economic synthesis of π-conjugated large oligomers via C-H activated oligomerization. Dyes Pigm. 2019, 162, 640–646.
- 50 Zhang, X.-F.; Cheng, J.-Z.; Liu, H.; Shan, Q.; Jia, G.-X.; Wen, H.-R.; Liu, S.-Y. One-pot synthesis of long-chain monodisperse π-conjugated oligomers terminated by C–H or C–Br bonds. Dyes Pigm. 2020, 172, 107819.
- 51 Liu, S.-Y.; Cheng, J.; Zhang, X.; Liu, H.; Shen, Z.; Wen, H. Single-step access to a series of D–A π-conjugated oligomers with 3–10 nm chain lengths. Polym. Chem. 2019, 10, 325–330.
- 52 Liu, H.; Zhang, X.-F.; Wang, L.-H.; Chen, Y.; Ye, D.-N.; Chen, L.; Wen, H.-R.; Liu, S.-Y. One-Pot Synthesis of 3- to 15-Mer π-Conjugated Discrete Oligomers with Widely Tunable Optical Properties. Chin. J. Chem. 2021, 39, 577–584.
- 53 Liu, S.-Y.; Shi, M.-M.; Huang, J.-C.; Jin, Z.-N.; Hu, X.-L.; Pan, J.-Y.; Jen, A. K.-Y.; Chen, H.-Z. C–H activation: making diketopyrrolopyrrole derivatives easily accessible. J. Mater. Chem. A 2013, 1, 2795–2805.
- 54 Okamoto, K.; Zhang, J.; Housekeeper, J. B.; Marder, S. R.; Luscombe, C. K. C–H Arylation Reaction: Atom Efficient and Greener Syntheses of π-Conjugated Small Molecules and Macromolecules for Organic Electronic Materials. Macromolecules 2013, 46, 8059–8078.
- 55 Bohra, H.; Wang, M. Direct C–H arylation: a “Greener” approach towards facile synthesis of organic semiconducting molecules and polymers. J. Mater. Chem. A 2017, 5, 11550–11571.
- 56 Pouliot, J. R.; Grenier, F.; Blaskovits, J. T.; Beaupre, S.; Leclerc. M. Direct (Hetero)arylation Polymerization: Simplicity for Conjugated Polymer Synthesis. Chem. Rev. 2016, 116, 14225–14274.
- 57 Gobalasingham, N. S.; Thompson, B. C. Direct arylation polymerization: A guide to optimal conditions for effective conjugated polymers. Prog. Polym. Sci. 2018, 83, 135–201.
- 58 Wang, L.-H.; Liu, L.-L.; Liu, H.; Chen, Y.; Ye, D.-N.; Fu, W.; Liu, S.-Y. Diketopyrrolopyrrole and perylene diimine-based large π-molecules constructed via C–H direct arylation. Dyes Pigm. 2022, 204, 110468.
- 59 Tan, Z.-R.; Xing, Y.-Q.; Cheng, J.-Z.; Zhang, G.; Shen, Z.-Q. Zhang, Y.-J.; Liao, G.; Chen, L.; Liu, S.-Y. Chem. Sci. 2022, 13, 1725.
- 60 Huang, X.; Chen, N.; Ye, D.; Zhong, A.; Liu, H.; Li, Z.; Liu, S.-Y. Structurally complementary star-shaped unfused ring electron acceptors with simultaneously enhanced device parameters for ternary organic solar cells. Sol. RRL 2023, 7, 2300143.
- 61 Chen, N.; Yang, L.-J.; Chen, Y.; Wu, Y.; Huang, X.-M.; Liu, H.; Xie, H.-Y.; Hu, L.; Li, Z.; Liu, S.-Y. PBDB-T accessed via direct C–H arylation polymerization for organic photovoltaic application. ACS Appl. Polym. Mater. 2022, 4, 7282–7289.
- 62 Yang, L.-J.; Chen, N.; Huang, X.-M.; Wu, Y.; Liu, H.; Liu, P.; Hu, L.; Li, Z.; Liu, S.-Y. Direct C–H Arylation-derived Donor Polymers Afford PCEs over 10% for Organic Solar Cells. ACS Appl. Polym. Mater. 2023, 5, 7340–7349.
- 63 Gorelsky, S I.; Lapointe, D.; Fagnou, K. Analysis of the Concerted Metalation-Deprotonation Mecha-nism in Palladium-Catalyzed Direct Arylation Across a Broad Range of Aromatic Substrates. J. Am. Chem. Soc. 2008, 130, 10848–10849.
- 64 Lapointe, D.; Fagnou, K. Overview of the Mechanistic Work on the Concerted Metallation–Deprotonation Pathway. Chem. Lett. 2010, 39, 1118–1126