Supramolecular Surface Engineering of Carbon Dots Enables Matrix-Free Room Temperature Phosphorescence†
Tao Zhang
School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorXiaoyan Wu
School of Materials Science and Engineering, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorLele Liu
School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorYuxiang Yang
School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorJialuo Zhuang
School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorZijian Li
School of Materials Science and Engineering, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorCorresponding Author
Hong Bi
School of Materials Science and Engineering, Anhui University, Hefei, Anhui, 230601 China
E-mail: [email protected]Search for more papers by this authorTao Zhang
School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorXiaoyan Wu
School of Materials Science and Engineering, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorLele Liu
School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorYuxiang Yang
School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorJialuo Zhuang
School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorZijian Li
School of Materials Science and Engineering, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorCorresponding Author
Hong Bi
School of Materials Science and Engineering, Anhui University, Hefei, Anhui, 230601 China
E-mail: [email protected]Search for more papers by this authorDedicated to the Special Issue of Carbon Dots Based Functional Materials.
Comprehensive Summary
Carbon dots (CDs) are an emerging class of nanomaterials with intriguing photophysical properties. Recently, achieving room temperature phosphorescence (RTP) for CDs has attracted considerable attention for biomedical and information applications. However, the CDs based RTP materials generally require the use of polymeric and inorganic matrix to provide the rigid environments, which remains a great challenge to obtain matrix-free CDs with RTP. Herein, a novel supramolecular strategy based on strong interparticle interactions has been developed to attain this objective, by covalent decoration of ureido-pyrimidinone (UPy, a multiple hydrogen bonding unit) on the surface of CDs. Structural characterizations validated the core-shell structure of the as-prepared CDs (EDTA-CDs) and demonstrated the successful attachment of UPy via post-modification (UPy-CDs). The presence of UPy recognition units render the strong hydrogen bonding between UPy-CDs, which stabilizes the triplet state via rigidifying effect. As a result, UPy-CDs exhibit matrix-free efficient RTP (λem = 534 nm) with high brightness and long lifetime (33.6 ms) in the solid state. Owing to the dual-emission character, we further explored the application potential of UPy-CDs in information encryption and anti-counterfeiting. Overall, this work provides a new and facile strategy for achieving matrix-free phosphorescent CDs with elegant incorporation of supramolecular chemistry.
Supporting Information
Filename | Description |
---|---|
cjoc202300133-sup-0001-supinfo.pdfPDF document, 2.6 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Yan, X.; Feng, W.; Zheng, B.; Huang, F. Stimuli-responsive Supramolecular Polymeric Materials. Chem. Soc. Rev. 2012, 41, 6042–6065.
- 2 Peng, H.; Zhu, W.; Guo, W.; Li, Q.; Ma, S.; Bucher, C.; Liu, B.; Ji, X.; Huang, F.; Sessler, J. L. Supramolecular Polymers: Recent Advances Based on The Types of Underlying Interactions. Prog. Polym. Sci. 2023, 137, 101635.
- 3 Zhou, W.; Lin, W.; Chen, Y.; Liu, Y. Supramolecular assembly confined purely organic room temperature phosphorescence and its biological imaging. Chem. Sci. 2022, 13, 7976–7989.
- 4 Zhou, W.; Chen, Y.; Lin, W.; Liu, Y. Luminescent lanthanide–macrocycle supramolecular assembly. Chem. Commun. 2021, 57, 11443–11456.
- 5 Tian, Y.; Tong, X.; Li, J.; Gao, S.; Cao, R. Long-Lived Room-Temperature Phosphorescence Based on Hydrogen Bonding Self-Assembling Supramolecular Film. Chin. J. Chem. 2021, 40, 487–492.
- 6 Liu, Z.; Guo, W.; Wang, W.; Guo, Z.; Yao, L.; Xue, Y.; Liu, Q.; Zhang, Q. Healable Strain Sensor Based on Tough and Eco-Friendly Biomimetic Supramolecular Waterborne Polyurethane. ACS Appl. Mater. Interfaces 2022, 14, 6016–6027.
- 7 Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Raker, G. K.; Scrivens, W. A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.
- 8 Xue, S.; Li, P.; Sun, L.; An, l.; Qu, D.; Wang, X.; Sun, Z. The Formation Process and Mechanism of Carbon Dots Prepared from Aromatic Compounds as Precursors: A Review. Small 2023, 2206180.
- 9 Dordevic, L.; Arcudi, F.; Cacioppo, M.; Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 2022, 17, 112–130.
- 10 Döring, A.; Ushakova, E.; Rogach, A. L. Chiral carbon dots: synthesis, optical properties, and emerging applications. Light Sci. Appl. 2022, 11, 75.
- 11 Chen, Z.; Liu, Y.; Kang, Z. Acc. Chem. Res. 2022, 55, 3110–3124.
- 12 Xu, J.; Liang Q.; Li, Z.; Osipov, V. U.; Lin, Y.; Ge, B.; Zhu, J.; Bi, H. Rational Synthesis of Solid-State Ultraviolet B Emitting Carbon Dots via Acetic Acid-Promoted Fractions of sp3 Bonding Strategy. Adv. Mater. 2022, 34, 2200011.
- 13 Zhu, Z.; Ge, K.; Li, Z.; Hu, J.; Cheng, P.; Bi, H. Nickel-Doped Carbon Dots as an Efficient and Stable Electrocatalyst for Urea Oxidation. Small 2022, 2205234.
- 14 Zhao, X.; Tao, S.; Yang, B. The Classification of Carbon Dots and the Relationship between Synthesis Methods and Properties. Chin. J. Chem. 2023, 41, 2206–2216.
- 15 Zheng, M.; Jia, H.; Zhao, B.; Zhang, C.; Dang, Q.; Ma, H.; Xu, K.; Tan, Z. Gram-Scale Room-Temperature Synthesis of Solid-State Fluorescent Carbon Nanodots for Bright Electroluminescent Light Emitting Diodes. Small 2023, 2206715.
- 16 Liu, J.; Kong, T.; Xiong, H. Mulberry-Leaves-Derived Red-Emissive Carbon Dots for Feeding Silkworms to Produce Brightly Fluorescent Silk. Adv. Mater. 2022, 34, 2200152.
- 17 Song, T.; Huang, Z.; Zhang, X.; Ni, J.; Xiong, H. Nitrogen-Doped and Sulfonated Carbon Dots as a Multifunctional Additive to Realize Highly Reversible Aqueous Zinc-Ion Batteries. Small 2023, 2205558.
- 18 Yang, D.; Qu, D.; An, L.; Zong, X.; Sun, Z. A metal-free carbon dots for wastewater treatment by visible light active photo-Fenton-like reaction in the broad pH range. Chin. Chem. Lett. 2021, 32, 2292–2296.
- 19 Fu, R.; Song, H.; Liu, X.; Zhang, Y.; Xiao, G.; Zou, B.; Waterhouse, G. I. N.; Lu, S. Disulfide crosslinking-induced aggregation: Towards solid-state fluorescent carbon dots with vastly different emission colors. Chin. J. Chem. 2023, 41, 1007–1014.
- 20 Si, Y.; Zhao, Y.; Dai, W.; Cui, S.; Sun, P.; Shi, J.; Tong, B.; Cai, Z.; Dong, Y. Organic Host-Guest Materials with Bright Red Room-Temperature Phosphorescence for Persistent Bioimaging. Chin. J. Chem. 2023, 41, 1575–1582.
- 21 Jiang, K.; Gao, X.; Feng, X.; Wang, Y.; Li, Z.; Lin, H. Carbon Dots with Dual-Emissive, Robust, and Aggregation-Induced Room-Temperature Phosphorescence Characteristics. Angew. Chem. Int. Ed. 2020, 59, 1263–1269.
- 22 Song, S.; Liu, K.; Cao, Q.; Mao, X.; Zhao, W.; Wang, Y.; Liang, Y.; Zang, J.; Luo, Q.; Dong, L.; Shan, C. Ultraviolet Phosphorescent Carbon Nanodots. Light Sci. Appl. 2022, 11, 146.
- 23 Xia, C.; Zhu, S.; Zhang, S.; Zeng, Q.; Tao, S.; Tian, X.; Li, Y.; Yang, B. Carbonized Polymer Dots with Tunable Room-Temperature Phosphorescence Lifetime and Wavelength. ACS Appl. Mater. Interfaces 2020, 12, 38593–38601.
- 24 Ding, Y.; Wang, X.; Tang, M.; Qiu, B. Tailored Fabrication of Carbon Dot Composites with Full-Color Ultralong Room-Temperature Phosphorescence for Multidimensional Encryption. Adv. Sci. 2022, 9, 2103833.
- 25 Sun, Y.; Zhang, X.; Zhuang, J.; Zhang, H.; Hu, C.; Zheng, M.; Lei, B.; Liu, Y. The room temperature afterglow mechanism in carbon dots: Current state and further guidance perspective. Carbon 2020, 165, 306–316.
- 26 Cao, Q.; Liu, K.; Liang, Y.; Song, S.; Deng, Y.; Mao, X.; Wang, Y.; Zhao, W.; Lou, Q.; Shan, C. Brighten Triplet Excitons of Carbon Nanodots for Multicolor Phosphorescence Films. Nano Lett. 2022, 22, 4097–4105.
- 27 Zhu, J.; Hu, J.; Hu, Q.; Zhang, X.; Ushakova, E. V.; Liu, K.; Wang, S.; Chen, X.; Shan, C.; Rogach, A. L.; Bai, X. White Light Afterglow in Carbon Dots Achieved via Synergy between the Room-Temperature Phosphorescence and the Delayed Fluorescence. Small 2022, 18, 2105415.
- 28 Shi, H.; Wu, Y.; Xu, J.; Shi, H.; An, Z. Recent Advances of Carbon Dots with Afterglow Emission. Small 2023, 2207104.
- 29 Wang, K.; Qu, l.; Yang, C. Long-Lived Dynamic Room Temperature Phosphorescence from Carbon Dots Based Materials. Small 2023, 2206429.
- 30 Wu, X.; Yu, F.; Han, Y.; Jiang, L.; Li, Z.; Zhu, J.; Xu, Q.; Tedesco, A. C.; Zhuang, J.; Bi, H. Enhanced Chemodynamic and Photoluminescence Efficiencies of Fe-O4 Coordinated Carbon Dots via the Core-Shell Synergistic Effect. Nanoscale 2023, 15, 376–386.
- 31 Wang, W.; Zhang, W.; Liu, Z.; Xue, Y.; Lei, X.; Gong, G.; Zhang, Q. Towards a tough reprocessable and self-healable acrylonitrile-butadiene rubber based on strong hydrogen bonding interactions. J. Mater. Chem. C 2021, 9, 6241–6250.
- 32 Tian, X.; Yin, B. Unconventional Preparation Strategies, and Applications Beyond Photoluminescence. Small 2019, 15, 1901803.
- 33 Yuan, F.; Wang, Z.; Li, X.; Li, Y.; Tan, Z.; Fan, L.; Yang, S. Bright Multicolor Bandgap Fluorescent Carbon Quantum Dots for Electroluminescent Light-Emitting Diodes. Adv. Mater. 2017, 29, 1604436.
- 34 Bogdanov, K.; Fedorov, A.; Osipov, V.; Enoki, T.; Takai, K.; Hayashi, T.; Ermakov, V.; Moshkalev, S.; Baranov, A. Annealing-Induced Structural Changes of Carbon Onions: High-resolution Transmission Electron Microscopy and Raman studies. Carbon 2014, 73, 78–86.
- 35 Bao, L.; Liu, C.; Zhang, Z.; Peng, D. Photoluminescence-Tunable Carbon Nanodots: Surface-State Energy-Gap Tuning. Adv. Mater. 2015, 27, 1663–1667.
- 36 Liu, J.; Lu, S.; Tang, Q.; Zhang, K.; Yu, W.; Sun, H.; Yang, B. One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis. Nanoscale 2017, 9, 7135–7142.
- 37 Zhang, X.; Li, G.; Wang, J.; Chu, J.; Wang, F.; Hu, Z.; Song, Z. Revisiting the Structure and Electrochemical Performance of Poly(o-phenylenediamine) as an Organic Cathode Material. ACS Appl. Mater. Interfaces 2022, 14, 27968–27978.
- 38 Dong, C.; Xu, M.; Huang, J.; Li, F.; Wei, P.; Tedesco, A. C.; Bi, H. Dynamic Thermosensitive Solid-State Photoluminescent Carbonized Polymer Dots as Temperature-Responsive Switches for Sensor Applications. ACS Appl. Nano Mater. 2020, 3, 10560–10564.
- 39 Hua, X.; Bao, Y.; Wu, F. Fluorescent Carbon Quantum Dots with Intrinsic Nucleolus-Targeting Capability for Nucleolus Imaging and Enhanced Cytosolic and Nuclear Drug Delivery. ACS Appl. Mater. Interfaces 2018, 10, 10664–10677.
- 40 Hu, S.; Trinchi, A.; Atkin, P. Cole, I. Tunable Photoluminescence Across the Entire Visible Spectrum from Carbon Dots Excited by White Light. Angew. Chem. Int. Ed. 2015, 54, 2970–2974.
- 41 Zhi, B.; Yao, X.; Wu, M.; Mensch, A.; Cui, Y.; Deng, J.; Duchimaza-Heredia, J. J.; Trerayapiwat, K. J.; Niehaus, T.; Nishimoto, Y.; Frank, B. P.; Zhang, Y.; Lewis, R. E.; Kappel, E. A.; Hamers, R. J.; Fairbrother, H. D.; Orr, G.; Murphy, C. J.; Cui, Q.; Haynes, C. L. Multicolor polymeric carbon dots: synthesis, separation and polyamide-supported molecular fluorescence. Chem. Sci. 2021, 12, 2441–2455.
- 42 Mao, Y.; Duan, H.; Xu, B.; Zhang, L.; Hu, Y.; Zhao, C.; Wang, Z.; Chen, L.; Yang, Y. Lithium Storage in Nitrogen-Rich Mesoporous Carbon Materials. Energy Environ. Sci. 2012, 5, 7950–7955.
- 43 Wang, W.; Zhang, W.; Liu, Z.; Xue, Y.; Lei, X.; Gong, G.; Zhang, Q. Towards A Tough Reprocessable and Self-Healable Acrylonitrile-Hutadiene Rubber Based on Strong Hydrogen Honding Interactions. J. Mater. Chem. C 2021, 9, 6241–6250.
- 44 Tang, L.; Ji, R.; Li, X.; Bai, G.; Liu, C.; Hao, J.; Liu, J.; Jiang, H.; Teng, K. S.; Yang, Z.; Lau, S. Deep Ultraviolet to Near-Infrared Emission and Photoresponse in Layered N-Doped Graphene Quantum Dots. ACS Nano 2014, 8, 6312–6320.
- 45 Getachew, G.; Hsiao, H. C.; Wibrianto, A.; Rasal, A. S.; Dirersa, W. B.; Huang, C.; Rao, N. V.; Chen, J. H.; Chang, J. High performance carbon dots based prodrug Platform: Image-Guided photodynamic and chemotherapy with On-Demand drug release upon laser irradiation. J. Colloid Interface Sci. 2023, 633, 396–410.
- 46 Shi, H.; Yao, W.; Ye, W.; Ma, H.; Huang, W.; An, Z. Ultralong Organic Phosphorescence: From Material Design to Applications. Acc. Chem. Res. 2022, 55, 3445–3459.
- 47 Li, Q.; Zhou, M.; Yang, M.; Yang, Q.; Zhang, Z.; Shi, J. Induction of Long-Lived Room Temperature Phosphorescence of Carbon Dots by Water in Hydrogen-Bonded Matrices. Nat. Commun. 2018, 9, 734.
- 48 Tan, J.; Ye, Y.; Ren, X.; Zhao, W.; Yue, D. High pH-Induced Efficient Room-Temperature Phosphorescence from Carbon Dots in Hydrogen-Bonded Matrices. J. Mater. Chem. C 2018, 6, 7890–7895.
- 49 Zhou, W.; Chen, Y.; Yu, Q.; Zhang, H.; Liu, Z.; Dai, X.; Li, J.; Liu, Y. Ultralong purely organic aqueous phosphorescence supramolecular polymer for targeted tumor cell imaging. Nat. Commun. 2022, 11, 4655.
- 50 Zhou, W.; Chen, Y.; Yu, Q.; Li, P.; Chen, X.; Liu, Y. Photo-responsive cyclodextrin/anthracene/Eu3+ supramolecular assembly for a tunable photochromic multicolor cell label and fluorescent ink. Chem. Sci. 2019, 10, 3346.
Citing Literature
15 September, 2023
Pages 2330-2336