Flexible Organic Framework-Modified Membranes for Osmotic Energy Harvesting
Tao Lin
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433 China
Search for more papers by this authorLei Zhang
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433 China
Search for more papers by this authorChao Li
Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191 China
Search for more papers by this authorYong-Hong Fu
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433 China
Search for more papers by this authorLongcheng Gao
Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191 China
Search for more papers by this authorCorresponding Author
Jun-Li Hou
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433 China
E-mail: [email protected]Search for more papers by this authorTao Lin
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433 China
Search for more papers by this authorLei Zhang
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433 China
Search for more papers by this authorChao Li
Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191 China
Search for more papers by this authorYong-Hong Fu
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433 China
Search for more papers by this authorLongcheng Gao
Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191 China
Search for more papers by this authorCorresponding Author
Jun-Li Hou
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433 China
E-mail: [email protected]Search for more papers by this authorComprehensive Summary
Bioinspired membranes are advantageous in capturing the osmotic energy. However, the conventional hybrid membranes possess low harvesting power density due to their low interfacial ionic transport efficiency and high internal resistance. Herein, a new kind of hybrid membranes consisting of porous polymer and flexible organic frameworks was developed. The 3D porous framework enables ions to flux with high efficiency at the polymer-framework interface, resulting in high osmotic energy harvesting efficiency. By systematically screening the pore size of the frameworks, the output power density as high as 5.7 W/m2 was achieved under 50-fold KCl salinity gradient.
Supporting Information
Filename | Description |
---|---|
cjoc202300012-sup-0001-supinfo.pdfPDF document, 952.3 KB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1(a) Siria, A.; Bocquet, M.-L.; Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem 2017, 1, 0091; (b) Yip, N. Y.; Brogioli, D.; Hamelers, H. V. M.; Nijmeijer, K. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects. Environ. Sci. Technol. 2016, 50, 12072–12094; (c) Tong, X.; Liu, S.; Crittenden, J.; Chen, Y. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting. ACS Nano 2021, 15, 5838–5860. (d) Zhang, Z.; Wen, L.; Jiang, L. Bioinspired smart asymmetric nanochannel membranes. Chem. Soc. Rev. 2018, 47, 322–356; (e) Wen, L.; Tian, Y.; Ma, J.; Zhai, J.; Jiang, L. Construction of biomimetic smart nanochannels with polymer membranes and application in energy conversion systems. Phys. Chem. Chem. Phys. 2012, 14, 4027–4042; (f) Zhang, Z.; Huang, X.; Qian, Y.; Chen, W.; Wen, L.; Jiang, L. Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single-Pore to Multichannel Membranes. Adv. Mater. 2020, 32, 1904351.
- 2(a) Post, J. W.; Veerman, J.; Hamelers, H. V. M.; Euverink, G. J. W.; Metz, S. J.; Nymeijer, K.; Buisman, C. J. N. Salinity-gradient Power: Evaluation of Pressure-retarded Osmosis and Reverse Electrodialysis. J. Membr. Sci. 2007, 288, 218–230; (b) Logan, B. E.; Elimelech, M. Membrane-based Processes for Sustainable Power Generation Using Water. Nature 2012, 488, 313–319; (c) Kan, X.; Wu, C.; Wen, L.; Jiang, L. Biomimetic Nanochannels: From Fabrication Principles to Theoretical Insights. Small Methods 2022, 6, 2101255; (d) Li, C.; Gao, L. Specific ion Selectivity with a Reverse-selective Mechanism. Nat. Nanotechnol. 2022, 17, 1130–1131; (e) Xie, G.; Wen, L.; Jiang, L. Biomimetic Smart Nanochannels for Power Harvesting. Nano Res. 2016, 9, 59–71.
- 3(a) Post, J. W.; Hamelers, H. V. M.; Buisman, C. J. N. Energy Recovery from Controlled Mixing Salt and Fresh Water with a Reverse Electro-dialysis System. Environ. Sci. Technol. 2008, 42, 5785–5790; (b) Vermaas, D. A.; Veerman, J.; Yip, N. Y.; Elimelech, M.; Saakes, M.; Nijmeijer, K. High Efficiency in Energy Generation from Salinity Gradients with Reverse Electrodialysis. ACS Sustainable Chem. Eng. 2013, 1, 1295–1302; (c) Yip, N. Y.; Vermaas, D. A.; Nijmeijer, K.; Elimelech, M. Thermodynamic, Energy Efficiency, and Power Density Analysis of Reverse Electrodialysis Power Generation with Natural Salinity Gradients. Environ. Sci. Technol. 2014, 48, 4925–4936.
- 4 Tedesco, M.; Cipollina, A.; Tamburini, A.; Micale, G. Towards 1kW Power Production in a Reverse Electrodialysis Pilot Plant with Saline Waters and Concentrated brines. J. Membr. Sci. 2017, 522, 226–236.
- 5 Catania, K. The Shocking Predatory Strike of the Electric eel. Science 2014, 346, 1231–1234.
- 6(a) Siria, A.; Poncharal, P.; Biance, A.-L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L. Giant Osmotic Energy Conversion Measured in a Single Transmembrane Boron Nitride Nanotube. Nature 2013, 494, 455–458; (b) Feng, J.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N. R.; Kis, A.; Radenovic, A. Single-layer MoS2 Nanopores as Nanopower Generators. Nature 2016, 536, 197–200.
- 7(a) Ji, J.; Kang, Q.; Zhou, Y.; Feng, Y.; Chen, X.; Yuan, J.; Guo, W.; Wei, Y.; Jiang, L. Osmotic Power Generation with Positively and Negatively Charged 2D Nanofluidic Membrane Pairs. Adv. Funct. 2017, 27, 1603623;
(b) Kwak, S. H.; Kwon, S.-R.; Baek, S.; Lim, S.-M.; Joo, Y.-C.; Chung, T. D. Densely Charged Polyelectrolyte-stuffed Nanochannel Arrays for Power Generation from Salinity Gradient. Sci. Rep. 2016, 6, 26416;
(c) Balme, S.; Ma, T.; Balanzat, E.; Janot, J.-M. Large Osmotic Energy Harvesting from Functionalized Conical Nanopore Suitable for Membrane Applications. J. Membr. Sci. 2017, 544, 18–24;
(d) Ai, X.; Li, Y.-H.; Li, Y.-W.; Gao, T.; Zhou, K.-G. Recent Progress on the Smart Membranes Based on Two-dimensional materials. Chin. Chem. Lett. 2022, 33, 2832–2844;
(e) Hao, J.; Wang, W.; Zhao, J.; Che, H.; Chen, L.; Sui, X. Construction and Application of Bioinspired Nanochannels Based on Two-dimensional Materials. Chin. Chem. Lett. 2022, 33, 2291–2300;
(f) Huang, X.; Kong, X.-Y.; Wen, L.; Jiang, L. Bioinspired Ionic Diodes: From Unipolar to Bipolar. Adv. Funct. Mater. 2018, 28, 1801079;
(g) Liu, P.; Zhou, T.; Teng, Y.; Fu, L.; Hu, Y.; Lin, X.; Kong, X.-Y.; Jiang, L.; Wen, L. Light-Induced Heat Driving Active Ion Transport Based on 2D MXene Nanofluids for Enhancing Osmotic Energy Conversion. CCS Chem. 2020, 3, 1325–1335;
10.31635/ccschem.020.202000296 Google Scholar(h) Di, J.; Li, L.; Wang, Q.; Yu, J. Porous Membranes with Special Wettabilities: Designed Fabrication and Emerging Application. CCS Chem. 2020, 3, 2280–2297;10.31635/ccschem.020.202000457 Google Scholar(i) Yang, Y.; Wu, D. Energy-Dissipative and Soften Resistant Hydrogels Based on Chitosan Physical Network: From Construction to Application. Chin. J. Chem. 2022, 40, 2118–2134; (j) Su, J.; Ji, D.; Tang, J.; Li, H.; Feng, Y.; Cao, L.; Jiang, L.; Guo, W. Anomalous Pore-Density Dependence in Nanofluidic Osmotic Power Generation. Chin. J. Chem. 2018, 36, 417–420.
- 8(a) Zhang, Z.; Sui, X.; Li, P.; Xie, G.; Kong, X.-Y.; Xiao, K.; Gao, L.; Wen, L.; Jiang, L. Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion. J. Am. Chem. Soc. 2017, 139, 8905–8914; (b) Gao, H.; Chen, W.; Xu, C.; Liu, S.; Tong, X.; Chen, Y. Two-Dimensional Ti3C2Tx MXene/GO Hybrid Membranes for Highly Efficient Osmotic Power Generation. Environ. Sci. Technol. 2020, 54, 2931–2940; (c) Xin, W.; Xiao, H.; Kong, X.-Y.; Chen, J.; Yang, L.; Niu, B.; Qian, Y.; Teng, Y.; Jiang, L.; Wen, L. Biomimetic Nacre-Like Silk-Crosslinked Membranes for Osmotic Energy Harvesting. ACS Nano 2020, 14, 9701–9710; (d) Chen, S.; Zhu, C.; Xian, W.; Liu, X.; Liu, X.; Zhang, Q.; Ma, S.; Sun, Q. Imparting Ion Selectivity to Covalent Organic Framework Membranes Using de Novo Assembly for Blue Energy Harvesting. J. Am. Chem. Soc. 2021, 143, 9415–9422; (e) Hu, Y.; Xu, L.; Wang, L.; Shao, Y.; Wang, H. Functional Poly (ionic liquid) Porous Membranes: From Fabrications to Advanced Applications. Chin. J. Chem. 2023, 41, 225–236; (f) Li, C.; Liu, P.; Zhai, Y.; Yao, L.; Lin, H.; Gao, L.; Jiang, L. Unconventional Dual Ion Selectivity Determined by the Forward Side of a Bipolar Channel toward Ion Flux. ACS Appl. Mater. Interfaces 2022, 14, 2230–2236; (g) Zhang, S.; Boussouar, I.; Li, H. Selective Sensing and Transport in Bionic Nanochannel Based on Macrocyclic Host-guest Chemistry. Chin. Chem. Lett. 2021, 32, 642–648; (h) Zhan, K.; Li, Z.; Chen, J.; Hou, Y.; Zhang, J.; Sun, R.; Bu, Z.; Wang, L.; Wang, M.; Chen, X.; et al. Tannic Acid Modified Single Nanopore with Multivalent Metal Ions Recognition and Ultra-trace Level Detection. Nano Today 2020, 33, 100868; (i) Hou, Y.; Hou, X. Bioinspired Nanofluidic Iontronics. Science 2021, 373, 628–629; (j) Wang, M.; Hou, Y.; Yu, L.; Hou, X. Anomalies of Ionic/Molecular Transport in Nano and Sub-Nano Confinement. Nano Lett. 2020, 20, 6937–6946; (k) Wang, M.; Meng, H.; Wang, D.; Yin, Y.; Stroeve, P.; Zhang, Y.; Sheng, Z.; Chen, B.; Zhan, K.; Hou, X. Dynamic Curvature Nanochannel-Based Membrane with Anomalous Ionic Transport Behaviors and Reversible Rectification Switch. Adv. Mater. 2019, 31, 1805130.
- 9(a) Chen, J.; Xin, W.; Kong, X.-Y.; Qian, Y.; Zhao, X.; Chen, W.; Sun, Y.; Wu, Y.; Jiang, L.; Wen, L. Ultrathin and Robust Silk Fibroin Membrane for High-Performance Osmotic Energy Conversion. ACS Energy Lett. 2020, 5, 742–748; (b) Huang, X.; Pang, J.; Zhou, T.; Jiang, L.; Wen, L. Engineered Sulfonated Polyether Sulfone Nanochannel Membranes for Salinity Gradient Power Generation. ACS Appl. Polym. Mater. 2021, 3, 485–493; (c) Xie, L.; Zhou, S.; Liu, J.; Qiu, B.; Liu, T.; Liang, Q.; Zheng, X.; Li, B.; Zeng, J.; Yan, M.; et al. Sequential Superassembly of Nanofiber Arrays to Carbonaceous Ordered Mesoporous Nanowires and Their Heterostructure Membranes for Osmotic Energy Conversion. J. Am. Chem. Soc. 2021, 143, 6922–6932; (d) Li, C.; Jiang, H.; Liu, P.; Zhai, Y.; Yang, X.; Gao, L.; Jiang, L. One Porphyrin Per Chain Self-Assembled Helical Ion-Exchange Channels for Ultrahigh Osmotic Energy Conversion. J. Am. Chem. Soc. 2022, 144, 9472–9478; (e) Luo, Q.; Liu, P.; Fu, L.; Hu, Y.; Yang, L.; Wu, W.; Kong, X.-Y.; Jiang, L.; Wen, L. Engineered Cellulose Nanofiber Membranes with Ultrathin Low-Dimensional Carbon Material Layers for Photothermal-Enhanced Osmotic Energy Conversion. ACS Appl. Mater. Interfaces 2022, 14, 13223–13230; (f) Huang, X.; Zhang, Z.; Kong, X.-Y.; Sun, Y.; Zhu, C.; Liu, P.; Pang, J.; Jiang, L.; Wen, L. Engineered PES/SPES nanochannel membrane for salinity gradient power generation. Nano Energy 2019, 59, 354–362; (g) Li, H.; Xiao, F.; Hong, G.; Su, J.; Li, N.; Cao, L.; Wen, Q.; Guo, W. On the Role of Heterogeneous Nanopore Junction in Osmotic Power Generation. Chin. J. Chem. 2019, 37, 469–473.
- 10(a) Sui, X.; Zhang, Z.; Li, C.; Gao, L.; Zhao, Y.; Yang, L.; Wen, L.; Jiang, L. Engineered Nanochannel Membranes with Diode-like Behavior for Energy Conversion over a Wide pH Range. ACS Appl. Mater. 2019, 11, 23815–23821; (b) Zhang, Z.; Kong, X.-Y.; Xiao, K.; Liu, Q.; Xie, G.; Li, P.; Ma, J.; Tian, Y.; Wen, L.; Jiang, L. Engineered Asymmetric Heterogeneous Membrane: A Concentration-Gradient-Driven Energy Harvesting Device. J. Am. Chem. Soc. 2015, 137, 14765–14772; (c) Guo, Y.; Huang, H.; Li, Z.; Wang, X.; Li, P.; Deng, Z.; Peng, X. Sulfonated Sub-Nanochannels in a Robust MOF Membrane: Harvesting Salinity Gradient Power. ACS Appl. Mater. 2019, 11, 35496–35500; (d) Shah, R.; Ali, S.; Raziq, F.; Ali, S.; Ismail, P. M.; Shah, S.; Iqbal, R.; Wu, X.; He, W.; Zu, X.; et al. Exploration of metal organic frameworks and covalent organic frameworks for energy-related applications. Coord. Chem. Rev. 2023, 477, 214968; (e) Wang, C.; Tang, J.; Chen, Z.; Jin, Y.; Liu, J.; Xu, H.; Wang, H.; He, X.; Zhang, Q. Ion-selective covalent organic frameworks boosting electrochemical energy storage and conversion: A Review. Energy Storage Mater. 2023, 55, 498–516; (f) Hou, S.; Zhang, Q.; Zhang, Z.; Kong, X.; Lu, B.; Wen, L.; Jiang, L. Charged porous asymmetric membrane for enhancing salinity gradient energy conversion. Nano Energy 2021, 79, 105509; (g) Lin, X.; Liu, P.; Xin, W.; Teng, Y.; Chen, J.; Wu, Y.; Zhao, Y.; Kong, X.-Y.; Jiang, L.; Wen, L. Heterogeneous MXene/PS-b-P2VP Nanofluidic Membranes with Controllable Ion Transport for Osmotic Energy Conversion. Adv. Funct. Mater. 2021, 31, 2105013; (h) Zhao, Y.; Wang, J.; Kong, X.-Y.; Xin, W.; Zhou, T.; Qian, Y.; Yang, L.; Pang, J.; Jiang, L.; Wen, L. Robust Sulfonated Poly (ether ether ketone) Nanochannels for High-performance Osmotic Energy Conversion. Natl. Sci. Rev. 2020, 7, 1349–1359; (i) Yang, L.; Liu, P.; Zhu, C.; Zhao, Y.; Yuan, M.; Kong, X.-Y.; Wen, L.; Jiang, L. Ion Transport Regulation Through Triblock Copolymer/PET Asymmetric Nanochannel Membrane: Model System Establishment and Rectification Mapping. Chin. Chem. Lett. 2021, 32, 822–825; (j) Chen, W.; Zhang, Q.; Qian, Y.; Xin, W.; Hao, D.; Zhao, X.; Zhu, C.; Kong, X.-Y.; Lu, B.; Jiang, L.; et al. Improved Ion Transport in Hydrogel-Based Nanofluidics for Osmotic Energy Conversion. ACS Cent. Sci. 2020, 6, 2097–2104.
- 11 Zhu, Y.; Zhan, K.; Hou, X. Interface Design of Nanochannels for Energy Utilization. ACS Nano 2018, 12, 908–911.
- 12(a) Zhang, Z.; He, L.; Zhu, C.; Qian, Y.; Wen, L.; Jiang, L. Improved Osmotic Energy Conversion in Heterogeneous Membrane Boosted by Three-dimensional Hydrogel Interface. Nat. Commun. 2020, 11, 875; (b) Chen, W.; Wang, Q.; Chen, J.; Zhang, Q.; Zhao, X.; Qian, Y.; Zhu, C.; Yang, L.; Zhao, Y.; Kong, X.-Y.; et al. Improved Ion Transport and High Energy Conversion through Hydrogel Membrane with 3D Interconnected Nanopores. Nano Lett. 2020, 20, 5705–5713.
- 13(a) Wang, Z.-K.; Lin, J.-L.; Zhang, Y.-C.; Yang, C.-W.; Zhao, Y.-K.; Leng, Z.-W.; Wang, H.; Zhang, D.-W.; Zhu, J.; Li, Z.-T. Synthesis and short DNA: In Situ Loading and Delivery of 4 nm-aperture Flexible Organic Frameworks. Mater. Chem. Front. 2021, 5, 869; (b) Lin, J.-L.; Wang, Z.-K.; Xu, Z.-Y.; Wei, L.; Zhang, Y.-C.; Wang, H.; Zhang, D.-W.; Zhou, W.; Zhang, Y.-B.; Liu, Y.; et al. Water-Soluble Flexible Organic Frameworks That Include and Deliver Proteins. J. Am. Chem. Soc. 2020, 142, 3577–3582; (c) Sun, J.-D.; Li, Q.; Haoyang, W.-W.; Zhang, D.-W.; Wang, H.; Zhou, W.; Ma, D.; Hou, J.-L.; Li, Z.-T. Adsorption-Based Detoxification of Endotoxins by Porous Flexible Organic Frameworks. Mol. Pharm. 2022, 19, 953–962; (d) Xu, Z.-Y.; Liu, H.-K.; Wu, Y.; Zhang, Y.-C.; Zhou, W.; Wang, H.; Zhang, D.-W.; Ma, D.; Li, Z.-T. Flexible Organic Framework-Based Anthracycline Prodrugs for Enhanced Tumor Growth Inhibition. ACS Appl. Bio Mater. 2021, 4, 4591–4597; (e) Zhou, H.-L.; Bai, J.; Tian, X.-Y.; Mo, Z.-W.; Chen, X.-M. Dynamic Pendulum Effect of an Exceptionally Flexible Pillared-Layer Metal-Organic Framework. Chin. J. Chem. 2021, 39, 2718–2724; (f) Wang, Q.; Sun, J.; Wei, D. Two-Dimensional Metal-Organic Frameworks and Covalent Organic Frameworks. Chin. J. Chem. 2022, 40, 1359–1385; (g) Ou, Z.; Liang, Z.; Dong, X.; Tan, F.; Gong, L.; Zhao, P.; Wang, H.; Liu, W.; Zheng, Z. Surfactants Mediated Synthesis of Highly Crystalline Thin Films of Imine- Linked Covalent Organic Frameworks on Water Surface. Chin. J. Chem. 2021, 39, 3322–3328; (h) Liu, H.; Han, Y.; Zheng, X.; Zhao, J.; Man, Y.; Sun, L.; Zhao, Y. One-Pot Synthesis of Fully-Conjugated Chemically Stable Two-Dimensional Covalent Organic Framework. Chin. J. Chem. 2022, 40, 699–704; (i) Dong, X.; Yang, J.; Wang, H.; Zhao, P.; Tan, F.; Zhou, Z.; Ou, Z.; Gong, L.; Liu, W.; Chen, X.; et al. Synthesis of Thin Film of a Three-Dimensional Covalent Organic Framework as Anti-counterfeiting Label. Chin. J. Chem. 2022, 40, 1171–1176; (j) Bin, B.; Ren, X.-R.; Wang, D.; Wan, L.-J. Lewis Acid Catalyzed Synthesis of Vinylene Linked Two Dimensional Covalent Organic Frameworks. Chin. J. Chem. 2022, 40, 1807–1812; (k) Zhang, Y.; Li, J.; Zhao, W.; Dou, H.; Zhao, X.; Liu, Y.; Zhang, B.; Yang, X. Defect-Free Metal–Organic Framework Membrane for Precise Ion/Solvent Separation toward Highly Stable Magnesium Metal Anode. Adv. Mater. 2022, 34, 2108114; (l) Qi, C.; Li, J.; Shi, Y.; Zhang, B.; Chen, T.; Wang, C.; Liu, Q.; Yang, X. ZIF-8 Penetrating Composite Membrane for Ion Sieving. J. Solid State Chem. 2022, 313, 123281.
- 14(a) Gao, Y.; Qiu, H.; Zhou, H.; Li, X.; Harniman, R.; Winnik, M. A.; Manners, I. Crystallization-Driven Solution Self-Assembly of Block Copolymers with a Photocleavable Junction. J. Am. Chem. Soc. 2015, 137, 2203–2206; (b) Sui, X.; Zhang, Z.; Zhang, Z.; Wang, Z.; Li, C.; Yuan, H.; Gao, L.; Wen, L.; Fan, X.; Yang, L.; et al. Biomimetic Nanofluidic Diode Composed of Dual Amphoteric Channels Maintains Rectification Direction over a Wide pH Range. Angew. Chem. Int. Ed. 2016, 55, 13056–13060; (c) Li, C.; Wen, L.; Sui, X.; Cheng, Y.; Gao, L.; Jiang, L. Large-scale, Robust Mushroom-shaped Nanochannel Array Membrane for Ultrahigh Osmotic Energy Conversion. Sci. Adv. 2021, 7, eabg2183.
- 15 Ali, M.; Nasir, S.; Ensinger, W. Stereoselective Detection of Amino Acids with Protein-modified Single Asymmetric Nanopores. Electrochim. Acta 2016, 215, 231–237.
- 16 Nasir, S.; Ali, M.; Ramirez, P.; Gómez, V.; Oschmann, B.; Muench, F.; Tahir, M. N.; Zentel, R.; Mafe, S.; Ensinger, W. Fabrication of Single Cylindrical Au-Coated Nanopores with Non-Homogeneous Fixed Charge Distribution Exhibiting High Current Rectifications. ACS Appl. Mater. Interfaces 2014, 6, 12486–12494.
- 17(a) Lan, W.-J.; Edwards, M. A.; Luo, L.; Perera, R. T.; Wu, X.; Martin, C. R.; White, H. S. Voltage-Rectified Current and Fluid Flow in Conical Nanopores. Acc. Chem. Res. 2016, 49, 2605–2613; (b) Guan, W.; Fan, R.; Reed, M. A. Field-effect Reconfigurable Nanofluidic Ionic Diodes. Nat. Commun. 2011, 2, 506.
- 18 Cheng, C.; Jiang, G.; Simon, G. P.; Liu, J. Z.; Li, D. Low-voltage Electrostatic Modulation of Ion Diffusion Through Layered Graphene-based Nanoporous Membranes. Nat. Nanotechnol. 2018, 13, 685–690.
- 19(a) Siwy, Z.; Fuliński, A. A Nanodevice for Rectification and Pumping Ions. Am. J. Phys. 2004, 72, 567–574;
(b) Walther, H. Generation of Photons on Demand Using Cavity Quantum Electrodynamics. Ann. Phys. 2005, 517, 7–19;
10.1002/andp.200551701-302 Google Scholar(c) Fuliński, A.; Kosińska, I. D.; Siwy, Z. On the Validity of Continuous Modelling of Ion Transport Through Nanochannels. EPL 2004, 67, 683.
- 20 Boo, H.; Park, S.; Ku, B.; Kim, Y.; Park, J. H.; Kim, H. C.; Chung, T. D. Ionic Strength-Controlled Virtual Area of Mesoporous Platinum Electrode. J. Am. Chem. Soc. 2004, 126, 4524–4525.