Automated Chemical Solid-Phase Synthesis of Glycans
Xiaona Li
Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
You Yang
Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
E-mail: [email protected]Search for more papers by this authorXiaona Li
Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
You Yang
Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
E-mail: [email protected]Search for more papers by this authorAbstract
Automated chemical solid-phase synthesis is an automation platform for rapid and reliable synthesis of glycans. Since the seminal work of Automated Glycan Assembly (AGA) disclosed by Seeberger in 2001, AGA has evolved from a proof-of-concept to a robust and reliable technology for streamlined production of various types of glycans. Through more than 20 years of unceasing efforts, the major breakthroughs in AGA including linkers, approved building blocks, and synthesizers have been acquired, and numerous influential achievements have been made in complex glycan synthesis. In addition, the HPLC-assisted automated synthesis emerges as a promising automation platform to access glycans. In this review, we highlight the key advances in the field of automated chemical solid-phase synthesis, especially in AGA. The synthesis of representative glycans based on AGA is also described.
References
- 1 Varki, A.; Cummings, R. D.; Esko, J. D.; Stanley, P.; Hart, G. W.; Aebi, M.; Darvill, A. G.; Kinoshita, T.; Packer, N. H.; Prestegard, J. H.; Schnaar, R. L.; Seeberger, P. H. Essentials of Glycobiology, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 2017.
- 2 Varki, A. Biological Roles of Glycans. Glycobiology 2017, 27, 3–49.
- 3 Karunaratne, D. N. The Complex World of Polysaccharides. IntechOpen, 2012.
- 4 Zhu, X.; Schmidt, R. R. New Principles for Glycoside-Bond Formation. Angew. Chem. Int. Ed. 2009, 48, 1900−1934.
- 5 Yang, Y.; Zhang, X.; Yu, B. O-Glycosylation Methods in the Total Synthesis of Complex Natural Glycosides. Nat. Prod. Rep. 2015, 32, 1331−1355.
- 6 Nielsen, M. M.; Pedersen, C. M. Catalytic Glycosylations in Oligosaccharide Synthesis. Chem. Rev. 2018, 118, 8285−8358.
- 7 Zhu, D.; Yu, B. Synthesis of the Diverse Glycosides in Traditional Chinese Medicine. Chin. J. Chem. 2018, 36, 681–691.
- 8 Qin, X.; Ye, X.-S. Donor Preactivation-Based Glycosylation: An Efficient Strategy for Glycan Synthesis. Chin. J. Chem. 2021, 39, 531–542.
- 9 Panza, M.; Pistorio, S. G.; Stine, K. J.; Demchenko, A. V. Automated Chemical Oligosaccharide Synthesis: Novel Approach to Traditional Challenges. Chem. Rev. 2018, 118, 8105−8150.
- 10
Downey, A. M.; Seeberger, P. H. Automated Oligosaccharide Synthesis: The Past, Present, and Future. In Comprehensive Glycoscience, 2nd ed., Elsevier B.V., 2021, pp. 561−601.
10.1016/B978-0-12-819475-1.00106-1 Google Scholar
- 11 Zhang, Z.; Ollmann, I. R.; Ye, X. S.; Wischnat, R.; Baasov, T.; Wong, C. H. Programmable One-Pot Oligosaccharide Synthesis. J. Am. Chem. Soc. 1999, 121, 734−753.
- 12 Cheng, C. W.; Zhou, Y.; Pan, W. H.; Dey, S.; Wu, C. Y.; Hsu, W. L.; Wong, C. H. Hierarchical and Programmable One-Pot Synthesis of Oligosaccharides. Nat. Commun. 2018, 9, 5202.
- 13 Tang, S. L.; Linz, L. B.; Bonning, B. C.; Pohl, N. L. B. Automated Solution-Phase Synthesis of Insect Glycans to Probe the Binding Affinity of Pea Enation Mosaic Virus. J. Org. Chem. 2015, 80, 10482−10489.
- 14 Nokami, T.; Hayashi, R.; Saigusa, Y.; Shimizu, A.; Liu, C.-Y.; Mong, K.-K. T.; Yoshida, J. Automated Solution-Phase Synthesis of Oligosaccharides via Iterative Electrochemical Assembly of Thioglycosides. Org. Lett. 2013, 15, 4520−4523.
- 15 Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Automated Solid-Phase Synthesis of Oligosaccharides. Science 2001, 291, 1523−1527.
- 16 Seeberger, P. H. The Logic of Automated Glycan Assembly. Acc. Chem. Res. 2015, 48, 1450−1463.
- 17 Guberman, M.; Seeberger, P. H. Automated Glycan Assembly: A Perspective. J. Am. Chem. Soc. 2019, 141, 5581–5592.
- 18 Ganesh, N. V.; Fujikawa, K.; Tan, Y. H.; Stine, K. J.; Demchenko, A. V. HPLC-Assisted Automated Oligosaccharide Synthesis. Org. Lett. 2012, 14, 3036−3039.
- 19 Sears, P.; Wong, C. H. Toward Aautomated Synthesis of Oligosaccharides and Glycoproteins. Science 2001, 291, 2344−2350.
- 20 Wen, L.; Edmunds, G.; Gibbons, C.; Zhang, J.; Gadi, M. R.; Zhu, H.; Fang, J.; Liu, X.; Kong, Y.; Wang, P. G. Toward Automated Enzymatic Synthesis of Oligosaccharides. Chem. Rev. 2018, 118, 8151−8187.
- 21 Seeberger, P. H.; Haase, W. C. Solid-Phase Oligosaccharide Synthesis and Combinatorial Carbohydrate Libraries. Chem. Rev. 2000, 100, 4349–4394.
- 22 Merrifield, R. B. Solid-Phase Peptide Synthesis. 1. Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149–2154.
- 23 Merrifield, R. B. Automated Synthesis of Peptides. Science 1965, 150, 178–185.
- 24 Frechet, J. M.; Schuerch, C. Solid-Phase Synthesis of Oligosaccharides. I. Preparation of the Solid Support. Poly[p-(1-propen-3-ol-1-yl)styrene]. J. Am. Chem. Soc. 1971, 93, 492–496.
- 25 Hurevich, M.; Kandasamy, J.; Seeberger, P. H. Automated Oligosaccahride Synthesis: Techniques and Applications. In Glycochemical Synthesis: Strategies and Applications, 1st ed., Eds.: Hung, S.-C.; Zulueta, M. M., John Wiley & Sons, Inc., 2016, pp. 189–204.
- 26 Tanaka, K.; Fukase, K. In Solid-Phase Organic Synthesis: Concepts, Strategies, and Applications, Eds.: Toy, P. H.; Lam, Y., John Wiley & Sons, Inc., Hoboken, NJ, 2012, pp. 489–530.
- 27 Walvoort, M. T.; Volbeda, A. G.; Reintjens, N. R.; van den Elst, H.; Plante, O. J.; Overkleeft, H. S.; van der Marel, G. A.; Codee, J. D. Automated Solid-Phase Synthesis of Hyaluronan Oligosaccharides. Org. Lett. 2012, 14, 3776–3779.
- 28 Kröck, L.; Esposito, D.; Castagner, B.; Wang, C.-C.; Bindschädler, P.; Seeberger, P. H. Streamlined Access to Conjugation-Ready Glycans by Automated Synthesis. Chem. Sci. 2012, 3, 1617–1622.
- 29 Eller, S.; Collot, M.; Yin, J.; Hahm, H. S.; Seeberger, P. H. Automated Solid-Phase Synthesis of Chondroitin Sulfate Glycosaminoglycans. Angew. Chem. Int. Ed. 2013, 52, 5858–5861.
- 30 Wilsdorf, M.; Schmidt, D.; Bartetzko, M. P.; Dallabernardina, P.; Schuhmacher, F.; Seeberger, P. H.; Pfrengle, F. A Traceless Photocleavable Linker for the Automated Glycan Assembly of Carbohydrates with Free Reducing Ends. Chem. Commun. 2016, 52, 10187–10189.
- 31 Le Mai Hoang, K.; Pardo-Vargas, A.; Zhu, Y.; Yu, Y.; Loria, M.; Delbianco, M.; Seeberger, P. H. Traceless Photolabile Linker Expedites the Chemical Synthesis of Complex Oligosaccharides by Automated Glycan Assembly. J. Am. Chem. Soc. 2019, 141, 9079–9086.
- 32 Tuck, O. T.; Sletten, E. T.; Danglad-Flores, J.; Seeberger, P. H. Towards a Systematic Understanding of the Influence of Temperature on Glycosylation Reactions. Angew. Chem. Int. Ed. 2022, 61, e202115433.
- 33 Ferrier, R. J.; Hay, R. W.; Vethaviyasar, V. A Potentially Versatile Synthesis of Glycosides. Carbohydr. Res. 1973, 27, 55–61.
- 34
Hashimoto, S.; Honda, T.; Ikegami, S. A Rapid and Efficient Synthesis of 1,2-trans-β-linked Glycosides via Benzyl- or Benzoyl-Protected Glycopyranosyl Phosphates. J. Chem. Soc., Chem. Commun. 1989, 685–687.
10.1039/C39890000685 Google Scholar
- 35 Schmidt, R. R.; Michel, J. Facile Synthesis of α- and β-O-Glycosyl Imidates; Preparation of Glycosides and Disaccharides. Angew. Chem. Int. Ed. 1980, 19, 731–732.
- 36 Yu, B.; Tao, H. Glycosyl Trifluoroacetimidates. Part 1: Preparation and Application as New Glycosyl Donors. Tetrahedron Lett. 2001, 42, 2405–2407.
- 37 Danglad-Flores, J.; Leichnitz, S.; Sletten, E. T.; Abragam Joseph, A.; Bienert, K.; Le Mai Hoang, K.; Seeberger, P. H. Microwave-Assisted Automated Glycan Assembly. J. Am. Chem. Soc. 2021, 143, 8893–8901.
- 38 Senf, D.; Ruprecht, C.; de Kruijff, G. H. M.; Simonetti, S. O.; Schuhmacher, F.; Seeberger, P. H.; Pfrengle, F. Active Site Mapping of Xylan-Deconstructing Enzymes with Arabinoxylan Oligosaccharides Produced by Automated Glycan Assembly. Chem. - Eur. J. 2017, 23, 3197−3205.
- 39 Dallabernardina, P.; Ruprecht, C.; Smith, P. J.; Hahn, M. G.; Urbanowicz, B. R.; Pfrengle, F. Automated Glycan Assembly of Galactosylated Xyloglucan Oligosaccharides and Their Recognition by Plant Cell Wall Glycan-Directed Antibodies. Org. Biomol. Chem. 2017, 15, 9996−10000.
- 40 Yu, Y.; Kononov, A.; Delbianco, M.; Seeberger, P. H. A Capping Step During Automated Glycan Assembly Enables Access to Complex Glycans in High Yield. Chem. - Eur. J. 2018, 24, 6075−6078.
- 41 Geert Volbeda, A.; Van Mechelen, J.; Meeuwenoord, N.; Overkleeft, H. S.; Van Der Marel, G. A.; Codee, J. D. C. Cyanopivaloyl Ester in the Automated Solid-Phase Synthesis of Oligorhamnans. J. Org. Chem. 2017, 82, 12992−13002.
- 42 Hahm, H. S.; Schlegel, M. K.; Hurevich, M.; Eller, S.; Schuhmacher, F.; Hofmann, J.; Pagel, K.; Seeberger, P. H. Automated Glycan Assembly Using the Glyconeer 2.1 Synthesizer. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E3385−E3389.
- 43 Sletten, E. T.; Danglad-Flores, J.; Nuno, M.; Guthrie, D.; Seeberger, P. H. Automated Glycan Assembly in a Variable-Bed Flow Reactor Provides Insights into Oligosaccharide−Resin Interactions. Org. Lett. 2020, 22, 4213−4216.
- 44 Hahm, H. S.; Broecker, F.; Kawasaki, F.; Mietzsch, M.; Heilbronn, R.; Fukuda, M.; Seeberger, P. H. Automated Glycan Assembly of Oligo-N- Acetyllactosamine and Keratan Sulfate Probes to Study Virus-Glycan Interactions. Chem 2017, 2, 114−124.
- 45 Kandasamy, J.; Schuhmacher, F.; Hahm, H. S.; Klein, J. C.; Seeberger, P. H. Modular Automated Solid Phase Synthesis of Dermatan Sulfate Oligosaccharides. Chem. Commun. 2014, 50, 1875−1877.
- 46 Tyrikos-Ergas, T.; Sletten, E. T.; Huang, J.-Y.; Seeberger, P. H.; Delbianco, M. On Resin Synthesis of Sulfated Oligosaccharides. Chem. Sci. 2022, 13, 2115–2120.
- 47 Sletten, E. T.; Danglad-Flores, J.; Leichnitz, S.; Joseph, A. A.; Seeberger, P. H. Expedited Synthesis of Mannose-6-Phosphate Containing Oligosaccharides. Carbohydr. Res. 2022, 511, 108489.
- 48 Guberman, M.; Brautigam, M.; Seeberger, P. H. Automated Glycan Assembly of Lewis Type I and II Oligosaccharide Antigens. Chem. Sci. 2019, 10, 5634−5640.
- 49 Hahm, H. S.; Liang, C. F.; Lai, C. H.; Fair, R. J.; Schuhmacher, F.; Seeberger, P. H. Automated Glycan Assembly of Complex Oligosaccharides Related to Blood Group Determinants. J. Org. Chem. 2016, 81, 5866−5877.
- 50 Love, K. R.; Seeberger, P. H. Automated Solid-Phase Synthesis of Protected Tumor-Associated Antigen and Blood Group Determinant Oligosaccharides. Angew. Chem. Int. Ed. 2004, 43, 602−605.
- 51 Danishefsky, S. J.; Shue, Y. K.; Chang, M. N.; Wong, C. H. Development of Globo-H Cancer Vaccine. Acc. Chem. Res. 2015, 48, 643−652.
- 52 Hahm, H. S.; Hurevich, M.; Seeberger, P. H. Automated Assembly of Oligosaccharides Containing Multiple cis-Glycosidic Linkages. Nat. Commun. 2016, 7, 12482.
- 53 Werz, D. B.; Castagner, B.; Seeberger, P. H. Automated Synthesis of the Tumor-Associated Carbohydrate Antigens Gb-3 and Globo-H: Incorporation of alpha-Galactosidic Linkages. J. Am. Chem. Soc. 2007, 129, 2770−2771.
- 54 Delbianco, M.; Kononov, A.; Poveda, A.; Yu, Y.; Diercks, T.; Jimenez-Barbero, J.; Seeberger, P. H. Well-Defined Oligo- and Polysaccharides as Ideal Probes for Structural Studies. J. Am. Chem. Soc. 2018, 140, 5421−5426.
- 55 Dallabernardina, P.; Schuhmacher, F.; Seeberger, P. H.; Pfrengle, F. Mixed-Linkage Glucan Oligosaccharides Produced by Automated Glycan Assembly Serve as Tools To Determine the Substrate Specificity of Lichenase. Chem. - Eur. J. 2017, 23, 3191−3196.
- 56 Schmidt, D.; Schuhmacher, F.; Geissner, A.; Seeberger, P. H.; Pfrengle, F. Automated Synthesis of Arabinoxylan-Oligosaccharides Enables Characterization of Antibodies that Recognize Plant Cell Wall Glycans. Chem. - Eur. J. 2015, 21, 5709−5713.
- 57 Bartetzko, M. P.; Schuhmacher, F.; Hahm, H. S.; Seeberger, P. H.; Pfrengle, F. Automated Glycan Assembly of Oligosaccharides Related to Arabinogalactan Proteins. Org. Lett. 2015, 17, 4344−4347.
- 58 Bartetzko, M. P.; Schuhmacher, F.; Seeberger, P. H.; Pfrengle, F. Determining Substrate Specificities of β1,4-Endogalactanases Using Plant Arabinogalactan Oligosaccharides Synthesized by Automated Glycan Assembly. J. Org. Chem. 2017, 82, 1842−1850.
- 59 Yu, Y.; Tyrikos-Ergas, T.; Zhu, Y.; Fittolani, G.; Bordoni, V.; Singhal, A.; Fair, R. J.; Grafmüller, A.; Seeberger, P. H.; Delbianco, M. Systematic Hydrogen-Bond Manipulations To Establish Polysaccharide Structure–Property Correlations. Angew. Chem. Int. Ed. 2019, 58, 13127–13132.
- 60 Zhu, Y.; Delbianco, M.; Seeberger, P. H. Automated Assembly of Starch and Glycogen Polysaccharides. J. Am. Chem. Soc. 2021, 143, 9758−9768.
- 61 Weishaupt, M. W.; Matthies, S.; Hurevich, M.; Pereira, C. L.; Hahm, H. S.; Seeberger, P. H. Automated Glycan Assembly of a S. pneumoniae Serotype 3 CPS Antigen. Beilstein J. Org. Chem. 2016, 12, 1440−1446.
- 62 Schumann, B.; Hahm, H. S.; Parameswarappa, S. G.; Reppe, K.; Wahlbrink, A.; Govindan, S.; Kaplonek, P.; Pirofski, L. A.; Witzenrath, M.; Anish, C.; Pereira, C. L.; Seeberger, P. H. A Semisynthetic Streptococcus pneumoniae Serotype 8 Glycoconjugate Vaccine. Sci. Transl. Med. 2017, 9, eaaf5347.
- 63 Loucano, J.; Both, P.; Marchesi, A.; Bino, L. d.; Adamo, R.; Flitsch, S.; Salwiczek, M. Automated Glycan Assembly of Streptococcus pneumoniae Type 14 Capsular Polysaccharide Fragments. RSC Adv. 2020, 10, 23668−23674.
- 64 Tyrikos-Ergas, T.; Bordoni, V.; Fittolani, G.; Chaube, M. A.; Grafmüller, A.; Seeberger, P. H.; Delbianco, M. Systematic Structural Characterization of Chitooligosaccharides Enabled by Automated Glycan Assembly. Chem. - Eur. J. 2021, 27, 2321–2325.
- 65 Kandasamy, J.; Hurevich, M.; Seeberger, P. H. Automated Solid Phase Synthesis of Oligoarabinofuranosides. Chem. Commun. 2013, 49, 4453−4455.
- 66 Sabbavarapu, N. M.; Seeberger, P. H. Automated Glycan Assembly of Oligogalactofuranosides Reveals the Influence of Protecting Groups on Oligosaccharide Stability. J. Org. Chem. 2021, 86, 7280−7287.
- 67 Moe, S. T.; Draget, K. I.; Sjåk-Bræk, G.; Smidsrød, O. Food Polysaccharides and Their Applications, Ed.: A. M. Stephen, Marcel Dekker, New York, 1995, pp. 245–286.
- 68 Hentzer, M.; Teitzel, G. M.; Balzer, G. J.; Heydorn, A.; Molin, S.; Givskov, M.; Parsek, M. R. Alginate Overproduction Affects Pseudomonas aeruginosa Biofilm Structure and Function. J. Bacteriol. 2001, 183, 5395–5401.
- 69 Walvoort, M. T.; van den Elst, H.; Plante, O. J.; Krock, L.; Seeberger, P. H.; Overkleeft, H. S.; van der Marel, G. A.; Codee, J. D. Automated Solid-Phase Synthesis of β-Mannuronic Acid Alginates. Angew. Chem. Int. Ed. 2012, 51, 4393−4396.
- 70 Joseph, A. A.; Pardo-Vargas, A.; Seeberger, P. H. Total Synthesis of Polysaccharides by Automated Glycan Assembly. Am. Chem. Soc. 2020, 142, 8561−8564.
- 71 Naresh, K.; Schumacher, F.; Hahm, H. S.; Seeberger, P. H. Pushing the Limits of Automated Glycan Assembly: Synthesis of a 50Mer Polymannoside. Chem. Commun. 2017, 53, 9085−9088.
- 72 Calin, O.; Eller, S.; Seeberger, P. H. Automated Polysaccharide Synthesis: Assembly of a 30Mer Mannoside. Angew. Chem. Int. Ed. 2013, 52, 5862−5865.
- 73 Fittolani, G.; Shanina, E.; Guberman, M.; Seeberger, P. H.; Rademacher, C.; Delbianco, M. Automated Glycan Assembly of 19F-labeled Glycan Probes Enables High-Throughput NMR Studies of Protein− Glycan Interactions. Angew. Chem. Int. Ed. 2021, 60, 13302−13309.
- 74 Zhu, Y.; Tyrikos-Ergas, T.; Schiefelbein, K.; Grafmüller, A.; Seeberger, P. H.; Delbianco, M. Automated Access to Well-Defined Ionic Oligosaccharides. Org. Biomol. Chem. 2020, 18, 1349−1353.
- 75 Fair, R. J.; Hahm, H. S.; Seeberger, P. H. Combination of Automated Solid-Phase and Enzymatic Oligosaccharide Synthesis Provides Access to α(2,3)-Sialylated Glycans. Chem. Commun. 2015, 51, 6183−6185.
- 76 Pistorio, S. G.; Geringer, S. A.; Stine, K. J.; Demchenko, A. V. Manual and Automated Syntheses of the N-Linked Glycoprotein Core Glycans. J. Org. Chem. 2019, 84, 6576–6588.
- 77 Panza, M.; Neupane, D.; Stine, K. J.; Demchenko, A. V. The Development of a Dedicated Polymer Support for the Solid-Phase Oligosaccharide Synthesis. Chem. Commun. 2020, 56, 10568–10571.
- 78 Panza, M.; Stine, K. J.; Demchenko, A. V. HPLC-Assisted Automated Oligosaccharide Synthesis: The Implementation of the Two-Way Split Valve as a Mode of Complete Automation. Chem. Commun. 2020, 56, 1333–1336.
- 79 Lai, C. H.; Hahm, H. S.; Liang, C. F.; Seeberger, P. H. Automated Solid- Phase Synthesis of Oligosaccharides Containing Sialic acids. Beilstein J. Org. Chem. 2015, 11, 617−621.
- 80 Esposito, D.; Hurevich, M.; Castagner, B.; Wang, C. C.; Seeberger, P. H. Automated Synthesis of Sialylated Oligosaccharides. Beilstein J. Org. Chem. 2012, 8, 1601−1609.
- 81 Zhu, Q.; Shen, Z.; Chiodo, F.; Nicolardi, S.; Molinaro, A.; Silipo, A.; Yu, B. Chemical Synthesis of Glycans up to a 128-Mer Relevant to the O-Antigen of Bacteroides vulgatus. Nat. Commun. 2020, 11, 4142.
- 82 Hofmann, J.; Hahm, H. S.; Seeberger, P. H.; Pagel, K. Identification of Carbohydrate Anomers Using Ion Mobility-Mass Spectrometry. Nature 2015, 526, 241−244.
- 83 Nicolardi, S.; Joseph, A. A.; Zhu, Q.; Shen, Z.; Pardo-Vargas, A.; Chiodo, F.; Molinaro, A.; Silipo, A.; van der Burgt, Y. E. M.; Yu, B.; Seeberger, P. H.; Wuhrer, M. Analysis of Synthetic Monodisperse Polysaccharides by Wide Mass Range Ultrahigh-Resolution MALDI Mass Spectrometry. Anal. Chem. 2021, 93, 4666–4675.
References