Lanthanide Circularly Polarized Luminescence: Bases and Applications
Francesco Zinna
Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
Search for more papers by this authorCorresponding Author
Lorenzo Di Bari
Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
Correspondence to: L. Di Bari, Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 3, I-56124 Pisa, Italy. E-mail: [email protected]Search for more papers by this authorFrancesco Zinna
Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
Search for more papers by this authorCorresponding Author
Lorenzo Di Bari
Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
Correspondence to: L. Di Bari, Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 3, I-56124 Pisa, Italy. E-mail: [email protected]Search for more papers by this authorAbstract
Lanthanide (III) luminescence is very characteristic: it is characterized by narrow emission bands, large Stokes shift, and a long excited state lifetime. Moreover, chiral lanthanide complexes can emit strongly circularly polarized light in a way that is almost precluded to purely organic molecules. Thanks to the sensitivity and specificity of the Ln circularly polarized luminescence (CPL) signal, CPL-active complexes are therefore employed as bioanalytical tools and other uses can be envisaged in many other fields. Here we present a brief overview of the most recently developed CPL-active lanthanide complexes and a selected few examples of their applications. We briefly discuss the main mechanisms that can rationalize the observed outstanding CPL properties of these systems, and some practical suggestions on how to measure and report data. Chirality 27:1–13, 2015. © 2014 Wiley Periodicals, Inc.
Literature Cited
- 1 Moore EG, Samuel APS, Raymond KN. From antenna to assay: lessons learned in lanthanide luminescence. Acc Chem Res 2009; 42: 542–552.
- 2 Bunzli J-CG, Piguet C. Taking advantage of luminescent lanthanide ions. Chem Soc Rev 2005; 34: 1048–1077.
- 3 Bunzli J-CG, Eliseeva SV. Intriguing aspects of lanthanide luminescence. Chem Sci 2013; 4: 1939–1949.
- 4 Lama M, Mamula O, Kottas GS, Rizzo F, De Cola L, Nakamura A, Kuroda R, Stoeckli–Evans H. Lanthanide class of a trinuclear enantiopure helical architecture containing chiral ligands: Synthesis, structure, and properties. Chem Eur J 2007; 13: 7358–7373.
- 5 Piguet C, Bünzli J-CG, Bernardinelli G, Hopfgartner G, Petoud S, Schaad O. Lanthanide podates with predetermined structural and photophysical properties: strongly luminescent self-assembled heterodinuclear d − f complexes with a segmental ligand containing heterocyclic imines and carboxamide binding units. J Am Chem Soc 1996; 118: 6681–6697.
- 6 Klink SI, Keizer H, van Veggel FCJM. Transition metal complexes as photosensitizers for near-infrared lanthanide luminescence. Angew Chem Int Ed 2000; 39: 4319–4321.
- 7 Pope SJA, Coe BJ, Faulkner S, Bichenkova EV, Yu X, Douglas KT. Self-assembly of heterobimetallic d − f hybrid complexes: sensitization of lanthanide luminescence by d-block metal-to-ligand charge-transfer excited states. J Am Chem Soc 2004; 126: 9490–9491.
- 8 Yuasa J, Ohno T, Tsumatori H, Shiba R, Kamikubo H, Kataoka M, Hasegawa Y, Kawai T. Fingerprint signatures of lanthanide circularly polarized luminescence from proteins covalently labeled with a β-diketonate europium(III) chelate. Chem Commun 2013; 49: 4604–4606.
- 9 Montgomery CP, Murray BS, New EJ, Pal R, Parker D. Cell-penetrating metal complex optical probes: targeted and responsive systems based on lanthanide luminescence. Acc Chem Res 2009; 42: 925–937.
- 10 B Gl, Gateau C, Imbert D, Pécaut J, Robeyns K, Filinchuk Y, Memon F, Muller G, Mazzanti M. Metal-controlled diastereoselective self-assembly and circularly polarized luminescence of a chiral heptanuclear europium wheel. J Am Chem Soc 2012; 134: 8372–8375.
- 11
Huang C-H Rare earth coordination chemistry: Fundamentals and applications. Hoboken, NJ: John Wiley & Sons; 2010.
10.1002/9780470824870 Google Scholar
- 12 Bünzli J-CG, Comby S, Chauvin A-S, Vandevyver CDB. New opportunities for lanthanide luminescence. J Rare Earth 2007; 25: 257–274.
- 13 Vuojola J, Soukka T. Luminescent lanthanide reporters: new concepts for use in bioanalytical applications. Methods Appl Fluoresc 2014; 2: 012001.
- 14
McGehee MD,
Bergstedt T,
Zhang C,
Saab AP,
O'Regan MB,
Bazan GC,
Srdanov VI,
Heeger AJ. Narrow bandwidth luminescence from blends with energy transfer from semiconducting conjugated polymers to europium complexes. Adv Mater 1999; 11: 1349–1354.
10.1002/(SICI)1521-4095(199911)11:16<1349::AID-ADMA1349>3.0.CO;2-W CAS Web of Science® Google Scholar
- 15 Evans RC, Douglas P, Winscom CJ. Coordination complexes exhibiting room-temperature phosphorescence: evaluation of their suitability as triplet emitters in organic light emitting diodes. Coord Chem Rev 2006; 250: 2093–2126.
- 16 Giovanella U, Pasini M, Freund C, Botta C, Porzio W, Destri S. Highly efficient color-tunable OLED based on poly (9,9-dioctylfluorene) doped with a novel europium complex. J Phys Chem C 2009; 113: 2290–2295.
- 17 Klampaftis E, Ross D, McIntosh KR, Richards BS. Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review. Sol Energy Mater Sol Cells 2009; 93: 1182–1194.
- 18 Bünzli J-CG, Eliseeva SV. Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. J Rare Earth 2010; 28: 824–842.
- 19 Muller G. Luminescent chiral lanthanide(III) complexes as potential molecular probes. Dalton Trans 2009: 9692–9707.
- 20 Lunkley JL, Shirotani D, Yamanari K, Kaizaki S, Muller G. Extraordinary circularly polarized luminescence activity exhibited by cesium tetrakis (3-heptafluoro-butylryl-(+)-camphorato) Eu(III) complexes in EtOH and CHCl3 Solutions. J Am Chem Soc 2008; 130: 13814–13815.
- 21 HPJM Dekkers. Circularly polarized luminesence: a probe for chirality in the excited state. In: N Berova, K Nakanishi, RW Woody, editors. Circular dichroism: principles and applications. New York: Wiley-VCH 2000; 185–215.
- 22 Richardson FS. Selection rules for lanthanide optical activity. Inorg Chem 1980; 19: 2806–2812.
- 23 Petoud S, Muller G, Moore EG, Xu J, Sokolnicki J, Riehl JP, Le UN, Cohen SM, Raymond KN. Brilliant Sm, Eu, Tb, and Dy chiral lanthanide complexes with strong circularly polarized luminescence. J Am Chem Soc 2007; 129: 77–83.
- 24 Lunkley JL, Shirotani D, Yamanari K, Kaizaki S, Muller G. Chiroptical spectra of a series of tetrakis ((+)-3-heptafluorobutylyrylcamphorato) lanthanide(III) with an encapsulated alkali metal ion: circularly polarized luminescence and absolute chiral structures for the Eu(III) and Sm(III) complexes. Inorg Chem 2011; 50: 12724–12732.
- 25 Seitz M, Moore EG, Ingram AJ, Muller G, Raymond KN. Enantiopure, octadentate ligands as sensitizers for europium and terbium circularly polarized luminescence in aqueous solution. J Am Chem Soc 2007; 129: 15468–15470.
- 26 Bauer H, Blanc J, Ross DL. Octacoordinate chelates of lanthanides. Two series of compounds. J Am Chem Soc 1964; 86: 5125–5131.
- 27 Samuel AP, Lunkley JL, Muller G, Raymond KN. Strong circularly polarized luminescence from highly emissive terbium complexes in aqueous solution. Eur J Inorg Chem 2010; 2010: 3343–3347.
- 28 Dickins RS, Parker D, Bruce JI, Tozer DJ. Correlation of optical and NMR spectral information with coordination variation for axially symmetric macrocyclic Eu(III) and Yb(III) complexes: axial donor polarizability determines ligand field and cation donor preference. Dalton Trans 2003: 1264–1271.
- 29
Riehl JP,
Muller G. Circularly polarized luminescence spectroscopy and emission-detected circular dichroism. In: N Berova, PL Polavarapu, K Nakanishi, RW Woody, editors. Comprehensive chiroptical spectroscopy. Vol. 1. Hoboken, NJ: Wiley; 2012.
10.1002/9781118120187.ch3 Google Scholar
- 30 Brittain HG, Desreux JF. Luminescence and NMR studies of the conformational isomers of lanthanide complexes with an optically active polyaza polycarboxylic macrocycle. Inorg Chem 1984; 23: 4459–4466.
- 31 Aime S, Botta M, Fasano M, Marques MPM, Geraldes CF, Pubanz D, Merbach AE. Conformational and coordination equilibria on DOTA complexes of lanthanide metal ions in aqueous solution studied by 1H-NMR spectroscopy. Inorg Chem 1997; 36: 2059–2068.
- 32 Di Bari L, Pintacuda G, Salvadori P. Stereochemistry and near-infrared circular dichroism of a chiral Yb complex. J Am Chem Soc 2000; 122: 5557–5562.
- 33 Di Bari L, Salvadori P. Static and dynamic stereochemistry of Chiral Ln DOTA analogues. Chem Phys Chem 2011; 12: 1490–1497.
- 34 Haas Y, Stein G. Quenching of the fluorescence of rare earth ions by high energy vibrations of solvent molecules: calculations of Franck-Condon factors from spectral data. Chem Phys Lett 1972; 15: 12–16.
- 35
Stein G,
Würzberg E. Energy gap law in the solvent isotope effect on radiationless transitions of rare earth ions. J Chem Phys 2008; 62: 208–213.
10.1063/1.430264 Google Scholar
- 36 Law G-L, Andolina CM, Xu J, Luu V, Rutkowski PX, Muller G, Shuh DK, Gibson JK, Raymond KN. Circularly polarized luminescence of curium: a new characterization of the 5f actinide complexes. J Am Chem Soc 2012; 134: 15545–15549.
- 37 Seitz M, Do K, Ingram AJ, Moore EG, Muller G, Raymond KN. Circularly polarized luminescence in enantiopure europium and terbium complexes with modular, all-oxygen donor ligands. Inorg Chem 2009; 48: 8469–8479.
- 38 Beeby A, Clarkson I.M., Dickins R.S., Faulkner S, Parker D, Royle L, de Sousa A.S., Williams JAG, Woods M. Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states. J Chem Soc Perk T 2 1999: 493–504.
- 39 Malta O, Brito H, Menezes J, Gonçalves e Silva F, de Mello Donegá C, Alves Jr S. Experimental and theoretical emission quantum yield in the compound Eu (thenoyltrifluoroacetonate)3• 2 (dibenzyl sulfoxide). Chem Phys Lett 1998; 282: 233–238.
- 40 Freund C, Porzio W, Giovanella U, Vignali F, Pasini M, Destri S, Mech A, Di Pietro S, Di Bari L, Mineo P. Thiophene based europium β-diketonate complexes: effect of the ligand structure on the emission quantum yield. Inorg Chem 2011; 50: 5417–5429.
- 41 Schippers P, van den Buekel A, Dekkers H. An accurate digital instrument for the measurement of circular polarization of luminescence. J Phys E 1982; 15: 945.
- 42 Riehl JP, Richardson FS. Circularly polarized luminescence spectroscopy. Chem Rev 1986; 86: 1–16.
- 43 Bonsall SD, Houcheime M, Straus DA, Muller G. Optical isomers of N, N″-bis(1-phenylethyl)-2, 6-pyridinedicarboxamide coordinated to europium(III) ions as reliable circularly polarized luminescence calibration standards. Chem Commun 2007: 3676–3678.
- 44 Harada T, Nakano Y, Fujiki M, Naito M, Kawai T, Hasegawa Y. Circularly polarized luminescence of Eu(III) complexes with point- and axis-chiral ligands dependent on coordination structures. Inorg Chem 2009; 48: 11242–11250.
- 45 Harada T, Tsumatori H, Nishiyama K, Yuasa J, Hasegawa Y, Kawai T. Nona-coordinated chiral Eu(III) complexes with stereoselective ligand–ligand noncovalent interactions for enhanced circularly polarized luminescence. Inorg Chem 2012; 51: 6476–6485.
- 46 Yuasa J, Ohno T, Miyata K, Tsumatori H, Hasegawa Y, Kawai T. Noncovalent ligand-to-ligand interactions alter sense of optical chirality in luminescent tris(β-diketonate) lanthanide(III) complexes containing a chiral bis(oxazolinyl) pyridine ligand. J Am Chem Soc 2011; 133: 9892–9902.
- 47 Tsumatori H, Harada T, Yuasa J, Hasegawa Y, Kawai T. Circularly polarized light from chiral lanthanide(III) complexes in single crystals. Appl Phys Express 2011; 4: 011601.
- 48
Mamula O,
Lama M,
Telfer SG,
Nakamura A,
Kuroda R,
Stoeckli–Evans H,
Scopelitti R. A trinuclear EuIII array within a diastereoselectively self–assembled helix formed by chiral bipyridine–carboxylate ligands. Angew Chem 2005; 117: 2583–2587.
10.1002/ange.200500094 Google Scholar
- 49 Evans NH, Carr R, Delbianco M, Pal R, Yufit DS, Parker D. Complete stereocontrol in the synthesis of macrocyclic lanthanide complexes: direct formation of enantiopure systems for circularly polarized luminescence applications. Dalton Trans 2013; 42: 15610–15616.
- 50 Carr R, Evans NH, Parker D. Lanthanide complexes as chiral probes exploiting circularly polarized luminescence. Chem Soc Rev 2012; 41: 7673–7686.
- 51 Butler SJ, Lamarque L, Pal R, Parker D. EuroTracker dyes: highly emissive europium complexes as alternative organelle stains for live cell imaging. Chem Sci 2014; 5: 1750–1756.
- 52 Metcalf DH, Snyder SW, Wu S, Hilmes GL, Riehl JP, Demas JN, Richardson FS. Excited-state chiral discrimination observed by time-resolved circularly polarized luminescence measurements. J Am Chem Soc 1989; 111: 3082–3083.
- 53 Das Gupta A, Richardson FS. Spectroscopic studies of lanthanide ion binding to multidentate ligands in aqueous solution. 3. Optically active Tb(EHPG)(L)n and Tb(DPA)m(L)n complexes. Inorg Chem 1981; 20: 2616–2622.
- 54 Moussa A, Pham C, Bommireddy S, Muller G. Importance of hydrogen–bonding sites in the chiral recognition mechanism between racemic D3 terbium(III) complexes and amino acids. Chirality 2009; 21: 497–506.
- 55 Kirschner S, Bakkar I. Utilization of the pfeiffer effect and outer-sphere complexation for the prediction of absolute configurations of optically active metal complexes. Coord Chem Rev 1982; 43: 325–335.
- 56 Pescitelli G, Di Bari L, Berova N. Application of electronic circular dichroism in the study of supramolecular systems. Chem Soc Rev 2014; 43: 5211–5233.
- 57 Carr R, Di Bari L, Lo Piano S, Parker D, Peacock RD, Sanderson JM. A chiral probe for the acute phase proteins alpha-1-acid glycoprotein and alpha-1-antitrypsin based on europium luminescence. Dalton Trans 2012; 41: 13154–13158.
- 58 Montgomery CP, New EJ, Parker D, Peacock RD. Enantioselective regulation of a metal complex in reversible binding to serum albumin: dynamic helicity inversion signaled by circularly polarized luminescence. Chem Commun 2008; 4261–4263.
- 59 Dias DM, Teixeira JMC, Kuprov I, New EJ, Parker D, Geraldes CFGC. Enantioselective binding of a lanthanide(III) complex to human serum albumin studied by 1H STD NMR techniques. Org Biomol Chem 2011; 9: 5047–5050.
- 60 Smith DG, McMahon BK, Pal R, Parker D. Live cell imaging of lysosomal pH changes with pH responsive ratiometric lanthanide probes. Chem Commun 2012; 48: 8520–8522.
- 61 Richardson FS, Faulkner TR. Optical activity of the f–f transitions in trigonal dihedral (D3) lanthanide(III) complexes. I Theory J Chem Phys 1982; 76: 1595–1606.
- 62 Di Bari L, Salvadori P. Solution structure of chiral lanthanide complexes. Coord Chem Rev 2005; 249: 2854–2879.
- 63 Di Pietro S, Lo Piano S, Di Bari L. Pseudocontact shifts in lanthanide complexes with variable crystal field parameters. Coord Chem Rev 2011; 255: 2810–2820.
- 64 Bruce JI, Parker D, Lopinski S, Peacock RD. Survey of factors determining the circularly polarized luminescence of macrocyclic lanthanide complexes in solution. Chirality 2002; 14: 562–567.
- 65 Di Pietro S, Di Bari L. The structure of MLn(hfbc)4 and a key to high circularly polarized luminescence. Inorg Chem 2012; 51: 12007–12014.
- 66 Mason S Molecular optical activity and the chiral discriminations. Cambridge, UK: Cambridge University Press; 1982.
- 67 Di Pietro S. Synthesis, structural and dynamic investigation of chiral metal complexes. PhD thesis: University of Pisa; 2012.
- 68 Castiglioni E, Abbate S, Longhi G. Revisiting with updated hardware an old spectroscopic technique: circularly polarized luminescence. Appl Spectrosc 2010; 64: 1416–1419.
- 69 Emeis C, Oosterhoff L. Emission of circularly-polarized radiation by optically-active compounds. Chem Phys Lett 1967; 1: 129–132.
- 70 Dekkers HP, Emeis C, Oosterhoff LJ. Measurement of optical activity in racemic mixtures. J Am Chem Soc 1969; 91: 4589–4590.
- 71 Emeis CA, Oosterhoff LJ. The n–π* absorption and emission of optically active trans–β–hydrindanone and trans–β–thiohydrindanone. J Chem Phys 1971; 54: 4809–4819.
- 72 Herren M, Morita M. Near-infrared circular polarized luminescence spectroscopy of GMO: Er3+ crystals. J Lumin 1995; 66: 268–271.
- 73 Maupin CL, Parker D, Williams JG, Riehl JP. Circularly polarized luminescence from chiral octadentate complexes of Yb(III) in the near-infrared. J Am Chem Soc 1998; 120: 10563–10564.
- 74 Maupin CL, Dickins RS, Govenlock LG, Mathieu CE, Parker D, Williams JG, Riehl JP. The measurement of circular polarization in the near-IR luminescence from chiral complexes of Yb(III) and Nd(III). J Phys Chem A 2000; 104: 6709–6717.