A Technical Analysis of Biofuel Production from Dairy Waste Sludge for Sustainable Environment
Rohit Pathak
Department of Mechanical Engineering, Punjabi University, Patiala, Punjab, 147002 India
Search for more papers by this authorCorresponding Author
Sandeep Singh
Department of Mechanical Engineering, Punjabi University, Patiala, Punjab, 147002 India
E-mail: [email protected]
Search for more papers by this authorInderpreet Singh Ahuja
Department of Mechanical Engineering, Punjabi University, Patiala, Punjab, 147002 India
Search for more papers by this authorRohit Pathak
Department of Mechanical Engineering, Punjabi University, Patiala, Punjab, 147002 India
Search for more papers by this authorCorresponding Author
Sandeep Singh
Department of Mechanical Engineering, Punjabi University, Patiala, Punjab, 147002 India
E-mail: [email protected]
Search for more papers by this authorInderpreet Singh Ahuja
Department of Mechanical Engineering, Punjabi University, Patiala, Punjab, 147002 India
Search for more papers by this authorAbstract
Ensuring a clean and secure environment has consistently presented a difficulty for researchers worldwide. In order to accomplish this objective, attention has been drawn to biofuels. The current study investigates the synthesis of biodiesel from stimulated composite sludge. A transesterification method was developed by examining the effects of process variables including preheating temperature, reaction time, methanol-to-oil ratio and catalyst concentration in order to estimate the lowest feasible viscosity and maximum ester recovery. The optimum kinematic viscosity (3.4 cSt) with ester recovery (78.93 %) was obtained by preheating dairy waste sludge at a 5:1 molar ratio to 40 °C and keeping that temperature for 40 min in the existence of 1 % KOH. These findings were based on the measurements of biofuel recovery and kinematic viscosity.
References
- 1I. M. Atadashi, M. K. Aroua, A. A. Aziz, Renew. Sustain. Energy Rev. 2010, 14 (7), 1999–2008.
- 2N. Anil, P. K. Rao, A. Sarkar, J. Kubavat, S. Vadivel, N. R. Manwar, B. Paul, Energy Convers. Manage. 2024, 318, 118884.
- 3R. A. Quevedo-Amador, B. P. Escalera-Velasco, A. M. R. Arias, H. E. Reynel-Ávila, J. C. Moreno-Piraján, L. Giraldo, A. Bonilla-Petriciolet, Clean Technol. Environ. Policy 2024, 26, 1–55.
- 4M. Zulqarnain, M. H. Yusoff, M. Ayoub, N. Ramzan, M. H. Nazir, I. Zahid, N. Abbas, N. Elboughdiri, C. R. Mirza, T. A. Butt, ACS Omega 2021, 6 (29), 19099–19114.
- 5K. V. Yatish, H. R. Harsha Hebbar, M. Sakar, R. G. Balakrishna, Process Saf. Environ. Prot. 2022, 160, 921–947.
- 6M. Farghali, I. M. Mohamed, A. I. Osman, D. W. Rooney, Environ. Chem. Lett. 2023, 21 (1), 97–152.
- 7T. Ahmad, R. M. Aadil, H. Ahmed, U. U. Rahman, B. C. V. Soares, S. L. Q. Souza, T. C. Pimentel, H. Scudino, J. T. Guimarães, E. A. Esmerino, M. Q. Freitas, R. B. Almada, S. M. R. Vendramel, M. C. Silva, A. G. Cruz, Trends Food Sci. Technol. 2019, 88, 361–372.
- 8Y. Aryanfar, A. Keçebaş, A. N. Sadabad, J. L. G. Alcaraz, J. B. Fernandez, W. Wu, Processes 2024, 12 (11), 2517.
- 9S. Sikiru, K. J. Abioye, H. B. Adedayo, S. Y. Adebukola, H. Soleimani, M. Anar, Renew. Sustain. Energy Rev. 2024, 200, 114535.
- 10A. Gashaw, A. Teshita, Int. J. Renewable Sustain. Energy 2014, 3 (5), 92–98.
- 11P. Sivakumar, K. Anbarasu, S. Renganathan, Fuel 2011, 90 (1), 147–151.
- 12A. Sivasamy, K. Y. Cheah, P. Fornasiero, F. Kemausuor, S. Zinoviev, S. Miertus, ChemSusChem: Chem. Sustain. Energy Mater. 2009, 2 (4), 278–300.
- 13R. S. Abusweireh, N. Rajamohan, Y. Vasseghian, Fuel 2022, 319, 123862.
- 14A. Z. Abdullah, B. Salamatinia, H. Mootabadi, S. Bhatia, Energy Policy 2009, 37 (12), 5440–5448.
- 15G. Fiorentino, M. Ripa, S. Ulgiati, Biofuels Bioprod. Biorefin. 2017, 11 (1), 195–214.
- 16A. I. Osman, M. Nasr, M. Farghali, A. K. Rashwan, A. Abdelkader, A. A. H. Al-Muhtaseb, I. Ihara, D. W. Rooney, Environ. Chem. Lett. 2024, 22 (3), 1005–1071.
- 17I. Y. Dharmegowda, L. M. Muniyappa, P. Siddalingaiah, A. B. Suresh, M. P. Gowdru Chandrashekarappa, C. Prakash, Sustainability 2022, 14 (18), 11132.
- 18A. K. Agarwal, J. G. Gupta, A. Dhar, Prog. Energy Combust. Sci. 2017, 61, 113–149.
- 19E. Ghedini, S. Taghavi, F. Menegazzo, M. Signoretto, Sustainability 2021, 13 (18), 10479.
- 20A. I. Osman, Z. Y. Lai, M. Farghali, C. L. Yiin, A. M. Elgarahy, A. Hammad, I. Ihara, A. S. Al-Fatesh, D. W. Rooney, P. S. Yap, Environ. Chem. Lett. 2023, 21 (5), 2639–2705.
- 21G. F. Silva, F. L. Camargo, A. L. Ferreira, Fuel Process. Technol. 2011, 92 (3), 407–413.
- 22P. Andreo-Martínez, N. García-Martínez, M. D. M. Durán-Del-Amor, J. Quesada-Medina, Energy Convers. Manage. 2018, 173, 187–196.
- 23M. Balat, H. Balat, Appl. Energy 2010, 87 (6), 1815–1835.
- 24Z. Amini, Z. Ilham, H. C. Ong, H. Mazaheri, W. H. Chen, Energy Convers. Manage. 2017, 141, 339–353.
- 25M. Salaheldeen, A. A. Mariod, M. K. Aroua, S. A. Rahman, M. E. M. Soudagar, I. R. Fattah, Catalysts 2021, 11 (9), 1121.
- 26W. Jindapon, P. Kuchonthara, C. Ngamcharussrivichai, Fuel Process. Technol. 2016, 148, 67–75.
- 27Y. C. Sharma, B. Singh, Renew. Sustain. Energy Rev. 2009, 13 (6–7), 1646–1651.
- 28H. W. Tan, A. R. Abdul Aziz, M. K. Aroua, Renew. Sustain. Energy Rev. 2013, 27, 118–127.
- 29S. Deshmukh, R. Kumar, K. Bala, Fuel Process. Technol. 2019, 191, 232–247.
- 30M. A. Olutoye, B. H. Hameed, Appl. Catal. A 2013, 450, 57–62.
- 31A. Tawfik, M. Mohsen, S. Ismail, N. S. Alhajeri, A. I. Osman, D. W. Rooney, Environ. Chem. Lett. 2022, 20 (6), 3811–3836.
- 32F. M. Al-Fadhli, N. S. Alhajeri, A. I. Osman, A. Tawfik, Int. J. Hydrogen Energy 2024, (In Press).
- 33I. R. Alves, C. F. Mahler, L. B. Oliveira, M. M. Reis, J. P. Bassin, Biomass Bioenergy 2020, 143, 105831.
- 34A. Sharma, S. K. Arya, Biofuels Production—Sustainability and Advances in Microbial Bioresources, Springer, Berlin 2020, 139–161.
10.1007/978-3-030-53933-7_8 Google Scholar
- 35L. C. Meher, D. V. Sagar, S. N. Naik, Renew. Sustain. Energy Rev. 2006, 10 (3), 248–268.
- 36F. Qiu, Y. Li, D. Yang, X. Li, P. Sun, Appl. Energy 2011, 88 (6), 2050–2055.
- 37M. J. Griffiths, R. G. Dicks, C. Richardson, S. T. Harrison, Biodiesel: -Feedstocks and Processing Technologies, Springer, Berlin 2011, 177–200.
- 38N. A. Yemashova, V. P. Murygina, D. V. Zhukov, A. A. Zakharyantz, M. A. Gladchenko, V. Appanna, S. V. Kalyuzhnyi, Rev. Environ. Sci. Bio/Technol. 2007, 6, 315–337.
- 39N. Tuntiwiwattanapun, C. Tongcumpou, D. Haagenson, D. Wiesenborn, J. Am. Oil Chem. Soc. 2013, 90, 1089–1099.
- 40H. Hazar, H. Aydin, Appl. Energy 2010, 87 (3), 786–790.
- 41P. R. Pandit, M. H. Fulekar, Renewable Energy 2019, 136, 837–845.
- 42A. T. Hoang, H. C. Ong, I. R. Fattah, C. T. Chong, C. K. Cheng, R. Sakthivel, Y. S. Ok, Fuel Process. Technol. 2021, 223, 106997.
- 43S. Bandhu, N. Bansal, D. Dasgupta, V. Junghare, A. Sidana, G. Kalyan, S. Hazra, D. Ghosh, Fuel 2019, 254, 115653.
- 44M. J. Montefrio, T. Xinwen, J. P. Obbard, Appl. Energy 2010, 87 (10), 3155–3161.
- 45T. Issariyakul, A. K. Dalai, Renew. Sustain. Energy Rev. 2014, 31, 446–471.
- 46O. J. Alamu, M. A. Waheed, S. O. Jekayinfa, Energy Sustain. Dev. 2007, 11 (3), 77–82.
- 47S. N. Gebremariam, J. M. Marchetti, Energy Convers. Manage. 2018, 168, 74–84.
- 48T. C. Aniokete, V. O. Aniaku, Adv. J. Sci. Eng. Technol. 2023, 8 (8), 23–40.
- 49L. da Costa Cardoso, F. N. C. de Almeida, G. K. Souza, I. Y. Asanome, N. C. Pereira, Renewable Energy 2019, 133, 743–748.
10.1016/j.renene.2018.10.081 Google Scholar
- 50M. M. K. Bhuiya, M. G. Rasul, M. M. K. Khan, N. Ashwath, Ind. Crops Prod. 2020, 152, 112493.
- 51G. L. Maddikeri, A. B. Pandit, P. R. Gogate, Ind. Eng. Chem. Res. 2012, 51 (45), 14610–14628.
- 52Z. Liu, A. Quek, S. K. Hoekman, R. Balasubramanian, Fuel 2013, 103, 943–949.
- 53L. Dehghan, M. T. Golmakani, S. M. H. Hosseini, Renewable Energy 2019, 138, 915–922.
- 54A. S. Ramadhas, S. Jayaraj, C. Muraleedharan, Fuel 2005, 84 (4), 335–340.
- 55P. Sivakumar, K. Anbarasu, S. Renganathan, Fuel 2011, 90 (1), 147–151.
- 56A. Karmakar, S. Karmakar, S. Mukherjee, Bioresour. Technol. 2010, 101 (19), 7201–7210.
- 57J. M. Encinar, A. Pardal, N. Sánchez, Fuel 2016, 166, 51–58.
- 58A. Demirbas, Biodiesel: A Realistic Fuel Alternative for Diesel Engines, Springer, Berlin 2008, 65–110.
- 59D. V. Feoktistov, D. O. Glushkov, G. V. Kuznetsov, E. G. Orlova, Chem. Eng. J. 2021, 421, 127765.
- 60B. R. Moser, Energy Fuels 2014, 28 (5), 3262–3270.
- 61R. Ganesan, S. Manigandan, M. S. Samuel, R. Shanmuganathan, K. Brindhadevi, N. T. L. Chi, P. A. Duc, A. Pugazhendhi, Biotech. Rep. 2020, 27, e00509.
- 62T. G. Ambaye, M. Vaccari, A. Bonilla-Petriciolet, S. Prasad, E. D. van Hullebusch, S. Rtimi, J. Environ. Manage. 2021, 290, 112627.