Development of Process Control Strategy for Acid Gas Sweetening Process
Lei Lian
Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorWeiqi Liu
Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorCorresponding Author
Yanhui Qiao
School of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHao Ma
School of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000 China
Search for more papers by this authorJunjiang Teng
School of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000 China
Search for more papers by this authorCorresponding Author
Yanbin Jiang
Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorLei Lian
Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorWeiqi Liu
Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorCorresponding Author
Yanhui Qiao
School of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHao Ma
School of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000 China
Search for more papers by this authorJunjiang Teng
School of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000 China
Search for more papers by this authorCorresponding Author
Yanbin Jiang
Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
This study aims to develop a process control strategy for the acid gas sweetening process based on dynamic simulation, disturbances of ±5 % are introduced in terms of flowrate and composition. The stability and controllability of control system are evaluated using indicators such as integral absolute error (IAE) and deviation in heat duty (∆Q). The results demonstrate that the composition-ratio control scheme for the absorption section combines the advantages of fast response from ratio calculation and precise composition control. Accordingly, the double-temperature control scheme for the regeneration section effectively mitigates overshoot and reduces settling time, resulting in a significant reduction of 31 % for a IAE of H2S concentration in lean solvent and 26 % for the ∆Q, respectively.
Supporting Information
Filename | Description |
---|---|
ceat70018-sup-0001-SuppMat.docx468.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Lian, W. Liu, S. Liu, H. Wang, L. Cheng, Y. Jiang, Sep. Purif. Technol. 2023, 315, 123629. DOI: https://doi.org/10.1016/j.seppur.2023.123629
- 2W. D. Li, Y. Zhuang, L. L. Liu, L. Zhang, J. Du, Chem. Eng. Technol. 2019, 42 (4), 753–760. DOI: https://doi.org/10.1002/ceat.201800554
- 3D. Hospital-Benito, J. Lemus, C. Moya, R. Santiago, C. Paramio, J. Palomar, Sep. Purif. Technol. 2022, 290, 120841. DOI: https://doi.org/10.1016/j.seppur.2022.120841
- 4X. Wu, M. H. Wang, P. Z. Liao, J. Shen, Y. G. Li, Appl. Energy 2022, 257, 113941. DOI: https://doi.org/10.1016/j.apenergy.2019.113941
10.1016/j.apenergy.2019.113941 Google Scholar
- 5W. Jiang, J. J. Li, G. S. Chen, R. J. Luo, Y. Chen, X. Ji, Z. X. Li, G. He, Chem. Eng. Technol. 2024, 47 (1), 152–159. DOI: https://doi.org/10.1002/ceat.202300197
- 6Z. Al Ani, M. Thafseer, A. M. Gujarathi, G. R. Vakili-Nezhaad, Process Saf. Environ. Prot. 2020, 140, 86–99. DOI: https://doi.org/10.1016/j.psep.2020.03.023
- 7F. Zarezadeh, A. Vatani, A. Palizdar, Z. Nargessi, Int. J. Greenhouse Gas Control 2022, 118, 103669. DOI: https://doi.org/10.1016/j.ijggc.2022.103669
- 8M. Mazumder, Q. Xu, Chem. Eng. Technol. 2020, 43 (11), 2198–2207. DOI: https://doi.org/10.1002/ceat.202000216
- 9J. Gaspar, J. B. Jorgensen, P. L. Fosbol, Int. Fed Autom. Control 2015, 488, 580–585. DOI: https://doi.org/10.1016/j.ifacol.2015.09.030
10.1016/j.ifacol.2015.09.030 Google Scholar
- 10J. Zhu, P. Zhao, S. D. Yang, L. Chen, Q. Zhang, Q. Yan, Fuel 2021, 292, 120263. DOI: https://doi.org/10.1016/j.fuel.2021.120263
- 11J. P. Gutierrez, E. E. Tarifa, E. Erdmann, Energy. 2018, 159, 1016–1023. DOI: https://doi.org/10.1016/j.energy.2018.06.108
- 12K. M. S. H. Salvinder, Z. F. Isa, S. A. Taqvi, M. A. H. Roslan, A. M. Shariff, Int. J. Greenhouse Gas Control 2018, 70, 164–177. DOI: https://doi.org/10.1016/j.energy.2018.06.108
- 13R. Dutta, L. O. Nord, O. Bolland, Fuel 2017, 202, 85–97. DOI: https://doi.org/10.1016/j.fuel.2017.04.030
- 14M. Mohajeri, M. Panahi, A. Shahsavand, Comput. Chem. Eng. 2024, 184, 108631. DOI: https://doi.org/10.1016/j.compchemeng.2024.108631
- 15C. Trapp, C. De Servi, F. Casella, A. Bardow, P. Colonna, Int. J. Greenhouse Gas Control 2015, 36, 13–26. DOI: https://doi.org/10.1016/j.ijggc.2015.02.005
- 16M. Emami, B. Hejazi, M. Karimi, S. A. Mousavi, Results in Engineering 2022, 15, 100566. DOI: https://doi.org/10.1016/j.rineng.2022.100566
- 17M. S. Walters, T. F. Edgar, G. T. Rochelle, Chem. Eng. Process. 2016, 107, 1–10. DOI: https://doi.org/10.1016/j.cep.2016.05.012
- 18C. Heinze, C. Higman, J. Marasigan, B. Epple, Fuel 2017, 203, 964–972. DOI: https://doi.org/10.1016/j.fuel.2017.03.086
- 19C. E. Guzmán-Martínez, R. Maya-Yescas, A. J. Castro-Montoya, F. Nápoles Rivera, Chem. Eng. Process. 2021, 159, 108238. DOI: https://doi.org/10.1016/j.cep.2020.108238
- 20J. Z. Liu, C. Cui, Q. W. Meng, Y. L. Shen, F. Fang, Measurement. 2015, 75, 255–262. DOI: https://doi.org/10.1016/j.measurement.2015.07.038
- 21Q. Pan, X. Y. Shang, J. Li, S. T. Ma, L. M. Li, L. Y. Sun, Sep. Purif. Technol. 2019, 219, 113–126. DOI: https://doi.org/10.1016/j.seppur.2019.03.022
- 22Q. Xu, X. Liu, D. Sun, B. Shan, P. Cui, Y. Wang, F. Zhang, Chem. Eng. Process. 2023, 191, 109466. https://doi.org/10.1016/j.cep.2023.109466
- 23B. Shan, D. Sun, Q. Zheng, F. Zhang, Y. Wang, Z. Zhu, Sep. Purif. Technol. 2021, 268, 118686. DOI: https://doi.org/10.1016/j.seppur.2021.118686
- 24L. Guo, Q. Xu, C. Ma, B. Shan, F. Zhang, P. Cui, Y. Wang, Z. Zhu, J. Chem. Technol. Biotechnol. 2022, 97, 2114–2127. DOI: https://doi.org/10.1002/jctb.7083
- 25P. Zitek, J. Fiser, T. Vyhlidal, Int. Fed. Autom. Control 2016, 49-10, 177–181. DOI: https://doi.org/10.1016/j.ifacol.2016.07.521
10.1016/j.ifacol.2016.07.521 Google Scholar
- 26Q. Pan, L. K. Gao, J. Li, J. L. Yan, L. Zhang, J. Y. Liu, M. Y. Sun, L. Y. Sun, Sep. Purif. Technol. 2020, 236, 116235. DOI: https://doi.org/10.1016/j.seppur.2019.116235
- 27M. L. Tsai, I. L. Chien, Sep. Purif. Technol. 2021, 255, 117694. DOI: https://doi.org/10.1016/j.seppur.2020.117694