Use of Fenton-Oxidation and a Helicoidal Flux Reactor in the Removal of Doxycycline: Optimization and By-Products Identification
Lisette Andrea Galvis-Monroy
Grupo GDCON, Facultad de Ingeniería, Sede de Investigación Universitaria (SIU), Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
Search for more papers by this authorCorresponding Author
Henry Zúñiga-Benítez
Grupo GDCON, Facultad de Ingeniería, Sede de Investigación Universitaria (SIU), Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Antioquia (UdeA), Calle 70 # 52-21, Medellín, Colombia
E-mail: [email protected]
Search for more papers by this authorGustavo A. Peñuela
Grupo GDCON, Facultad de Ingeniería, Sede de Investigación Universitaria (SIU), Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
Search for more papers by this authorLisette Andrea Galvis-Monroy
Grupo GDCON, Facultad de Ingeniería, Sede de Investigación Universitaria (SIU), Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
Search for more papers by this authorCorresponding Author
Henry Zúñiga-Benítez
Grupo GDCON, Facultad de Ingeniería, Sede de Investigación Universitaria (SIU), Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Antioquia (UdeA), Calle 70 # 52-21, Medellín, Colombia
E-mail: [email protected]
Search for more papers by this authorGustavo A. Peñuela
Grupo GDCON, Facultad de Ingeniería, Sede de Investigación Universitaria (SIU), Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
Search for more papers by this authorAbstract
Doxycycline (DOX) is a contaminant present in different water bodies. Fenton and photo-Fenton are two advanced oxidation technologies with a high potential for environmental remediation. This study aimed to eliminate DOX from aqueous solutions using Fenton, photo-Fenton, and a helicoidal flow reactor. The experimental conditions related to the presence of ferrous ions and hydrogen peroxide were optimized. After 60 min of reaction, the extents of pollutant elimination and mineralization were ∼85.0 % and ∼30.0 %, respectively. Hydroxyl radicals were identified as the agents responsible for the oxidation of the contaminant under the evaluated experimental conditions. Finally, some reaction by-products were identified, and a DOX removal route was proposed.
References
- 1L. Ma, Y. Liu, Q. Yang, L. Jiang, G. Li, Sci. Total Environ. 2022, 821, 153372. DOI: https://doi.org/10.1016/J.SCITOTENV.2022.153372
- 2E. M. Abd El-Monaem, A. S. Eltaweil, H. M. Elshishini, M. Hosny, M. M. Abou Alsoaud, N. F. Attia, G. M. El-Subruiti, A. M. Omer, Arabian J. Chem. 2022, 15 (5), 103743. DOI: https://doi.org/10.1016/J.ARABJC.2022.103743
- 3E. Serna-Galvis, Y. L. Martínez-Mena, J. Porras, R. A. Torres-Palma, Ingeniería y Competitividad 2022, 24 (1), 1–12. DOI: https://doi.org/10.25100/iyc.v24i1.11267
10.25100/iyc.v24i1.11267 Google Scholar
- 4A. G. Katsikaros, C. V. Chrysikopoulos, Environ Adv 2021, 6, 100131. DOI: https://doi.org/10.1016/J.ENVADV.2021.100131
- 5I. Ali, G. T. Imanova, A. Alamri, S. Z. Hasan, A. A. Basheer, Inorg. Chem. Commun. 2023, 157, 111414. DOI: https://doi.org/10.1016/J.INOCHE.2023.111414
- 6X. Cong, J. Bao, Int. J. Electrochem. Sci. 2020, 15, 4352–4367.
- 7Q. Sui, X. Cao, S. Lu, W. Zhao, Z. Qiu, G. Yu, Emerg Contam 2015, 1 (1), 14–24. DOI: https://doi.org/10.1016/J.EMCON.2015.07.001
10.1016/j.emcon.2015.07.001 Google Scholar
- 8G. Divyapriya, S. Singh, C. A. Martínez-Huitle, J. Scaria, A. V. Karim, P. V. Nidheesh, Chemosphere 2021, 276, 130188. DOI: https://doi.org/10.1016/J.CHEMOSPHERE.2021.130188
- 9C. W. Pai, G. S. Wang, Chemosphere 2022, 287, 132171. DOI: https://doi.org/10.1016/J.CHEMOSPHERE.2021.132171
- 10S. Fahad Almojil, J. Ning, A. Ibrahim Almohana, Inorg. Chem. Commun. 2024, 166, 112623. DOI: https://doi.org/10.1016/J.INOCHE.2024.112623
- 11R. Girón-Navarro, V. Martínez-Miranda, E. A. Teutli-Sequeira, I. Linares-Hernández, I. G. Martínez-Cienfuegos, M. Sánchez-Pozos, F. Santoyo-Tepole, J Photochem Photobiol A Chem 2023, 438, 114550. DOI: https://doi.org/10.1016/J.JPHOTOCHEM.2023.114550
- 12F. S. Mustafa, K. H. Hama Aziz, Process Saf. Environ. Prot. 2023, 170, 436–448. DOI: https://doi.org/10.1016/j.psep.2022.12.030
- 13Y. Jiang, J. Ran, K. Mao, X. Yang, L. Zhong, C. Yang, X. Feng, H. Zhang, Ecotoxicol. Environ. Saf. 2022, 236, 113464. DOI: https://doi.org/10.1016/j.ecoenv.2022.113464
- 14Y. Liu, Y. Zhao, J. Wang, J. Hazard. Mater. 2021, 404, 124191. DOI: https://doi.org/10.1016/J.JHAZMAT.2020.124191
- 15K. O. Rahman, K. H. H. Aziz, J. Environ. Chem. Eng. 2022, 10 (6), 109015. DOI: https://doi.org/10.1016/j.jece.2022.109015
- 16N. I. H. Hazril, A. A. Jalil, F. F. A. Aziz, N. S. Hassan, A. A. Fauzi, N. F. Khusnun, N. M. Izzudin, N. W. C. Jusoh, L. P. Teh, N. F. Jaafar, S. Rajendran, Sustainable Mater. Technol. 2024, 41, e00994. DOI: https://doi.org/10.1016/J.SUSMAT.2024.E00994
- 17Z. Huang, J. Wang, H. Cheng, J. Yu, M. Cai, LWT 2023, 184, 115106. DOI: https://doi.org/10.1016/J.LWT.2023.115106
- 18J. Wang, R. Zhuan, Sci. Total Environ. 2020, 701, 135023. DOI: https://doi.org/10.1016/j.scitotenv.2019.135023
- 19Y.-D. Chen, X. Duan, X. Zhou, R. Wang, S. Wang, N.-Q. Ren, S.-H. Ho, Chem. Eng. J. 2021, 409, 128207. DOI: https://doi.org/10.1016/J.CEJ.2020.128207
- 20M. J. Lima, C. G. Silva, A. M. T. Silva, J. C. B. Lopes, M. M. Dias, J. L. Faria, Chem. Eng. J. 2017, 310, 342–351. DOI: https://doi.org/10.1016/j.cej.2016.04.032
- 21J. A. Sánchez Pérez, P. Soriano-Molina, G. Rivas, J. L. García Sánchez, J. L. Casas López, J. M. Fernández Sevilla, Chem. Eng. J. 2017, 310, 464–472. DOI: https://doi.org/10.1016/j.cej.2016.06.055
- 22Y. Wang, M. Zhao, C. Hou, W. Chen, S. Li, R. K. Ren, Z. Li, Chem. Eng. J. 2021, 414, 128940. DOI: https://doi.org/10.1016/J.CEJ.2021.128940
- 23E. A. Serna-Galvis, A. C. Cáceres-Peña, R. A. Torres-Palma, Environ. Sci. Pollut. Res. 2020, 27 (33), 41381–41393. DOI: https://doi.org/10.1007/s11356-020-10069-8
- 24N. Abd Rahman, C. E. Choong, S. Pichiah, I. W. Nah, J. R. Kim, S. E. Oh, Y. Yoon, E. H. Choi, M. Jang, Sep. Purif. Technol. 2023, 304, 122294. DOI: https://doi.org/10.1016/J.SEPPUR.2022.122294
- 25J. C. Espíndola, R. O. Cristóvão, S. R. F. Araújo, T. Neuparth, M. M. Santos, R. Montes, J. B. Quintana, R. Rodil, R. A. R. Boaventura, V. J. P. Vilar, Sci. Total Environ. 2019, 667, 197–207. DOI: https://doi.org/10.1016/J.SCITOTENV.2019.02.335
- 26K. H. Hama Aziz, F. S. Mustafa, K. M. Omer, I. Shafiq, Water Resour Ind 2023, 30, 100227. DOI: https://doi.org/10.1016/j.wri.2023.100227
- 27G. Hincapié Mejía, G. A. Peñuela, M. A. Mueses, Results in Engineering 2022, 15, 100519. DOI: https://doi.org/10.1016/J.RINENG.2022.100519
- 28 American Public Health Association, American Water Works Association, Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, 24th ed., APHA Press, Washington, DC 2023.
- 29 United States Environmental Protection Agency (US EPA), Estimation Programs Interface SuiteTM for Microsoft® Windows, v 4.11, Washington, DC, USA 2024.
- 30R. S. Dhamorikar, V. G. Lade, P. V. Kewalramani, A. B. Bindwal, J. Ind. Eng. Chem. 2024, 138, 104–122. DOI: https://doi.org/10.1016/J.JIEC.2024.04.037
- 31J. O. Ighalo, C. A. Igwegbe, C. O. Aniagor, S. N. Oba, J. Water Process Eng. 2021, 39, 101886. DOI: https://doi.org/10.1016/J.JWPE.2020.101886
- 32M. Verma, A. K. Haritash, J. Environ. Chem. Eng. 2019, 7 (1), 102886. DOI: https://doi.org/10.1016/j.jece.2019.102886
- 33R. S. Cárdenas Sierra, H. Zúñiga-Benítez, G. A. Peñuela, J Photochem Photobiol A Chem 2022, 425, 113697. DOI: https://doi.org/10.1016/J.JPHOTOCHEM.2021.113697
- 34Y. Tian, F. Liu, B. Sun, Z. Tong, P. Fu, J. Zhang, W. Bi, S. Xu, G. Pei, J. Environ. Chem. Eng. 2023, 11 (2), 109441. DOI: https://doi.org/10.1016/J.JECE.2023.109441
- 35F. Berdini, J. O. Otalvaro, M. Avena, M. Brigante, Results Eng 2022, 16, 100765. DOI: https://doi.org/10.1016/J.RINENG.2022.100765
- 36M. D. Simić, T. P. Brdarić, B. G. Savić Rosić, Ľ. Švorc, D. J. Relić, D. D. Aćimović, J. Environ. Chem. Eng. 2024, 12 (5), 113369. DOI: https://doi.org/10.1016/J.JECE.2024.113369
- 37S. Fahad Almojil, J. Ning, A. Ibrahim Almohana, Inorg. Chem. Commun. 2024, 166, 112623. DOI: https://doi.org/10.1016/J.INOCHE.2024.112623
- 38W. Baran, E. Adamek, Chemosphere 2023, 341, 139854. DOI: https://doi.org/10.1016/J.CHEMOSPHERE.2023.139854
- 39P. Hong, Y. Li, J. He, A. Saeed, K. Zhang, C. Wang, L. Kong, J. Liu, Appl. Surf. Sci. 2020, 526, 146557. DOI: https://doi.org/10.1016/J.APSUSC.2020.146557
- 40G. Moussavi, M. Bakhtiarynasab, S. Shekoohiyan, S. Mohammadi, S. Giannakis, M. Li, J. Water Process Eng. 2024, 60, 105143. DOI: https://doi.org/10.1016/J.JWPE.2024.105143
- 41S. Mohammadi, G. Moussavi, K. Kiyanmehr, S. Shekoohiyan, M. Heidari, K. Naddafi, S. Giannakis, Sep. Purif. Technol. 2022, 298, 121665. DOI: https://doi.org/10.1016/J.SEPPUR.2022.121665
- 42Z. Mesgari, J. Saien, Sep. Purif. Technol. 2017, 185, 129–139. DOI: https://doi.org/10.1016/J.SEPPUR.2017.05.032
- 43K. H. Hama Aziz, H. Miessner, S. Mueller, A. Mahyar, D. Kalass, D. Moeller, I. Khorshid, M. A. M. Rashid, J. Hazard. Mater. 2018, 343, 107–115. DOI: https://doi.org/10.1016/j.jhazmat.2017.09.025
- 44P. Dhiman, G. Rana, R. A. Alshgari, A. Kumar, G. Sharma, M. Naushad, Z. A. ALOthman, Environ. Res. 2023, 216, 114665. DOI: https://doi.org/10.1016/J.ENVRES.2022.114665
- 45J. Ren, J. Zhang, Y. Zhang, L. Zhang, G. Li, B. Wang, L. Yang, W. He, J. Alloys Compd. 2023, 961, 171118. DOI: https://doi.org/10.1016/J.JALLCOM.2023.171118
- 46J. Zhang, H. Wu, D. Zhang, L. Zhang, C. Zhu, J. Water Process Eng. 2022, 48, 102904. DOI: https://doi.org/10.1016/J.JWPE.2022.102904
- 47J. Zhao, Q. Song, Q. He, J. Environ. Chem. Eng. 2023, 11 (5), 110383. DOI: https://doi.org/10.1016/J.JECE.2023.110383
- 48H. Zúñiga-Benítez, C. Aristizábal-Ciro, G. A. Peñuela, J. Environ. Manage. 2016, 167, 246–258. DOI: https://doi.org/10.1016/j.jenvman.2015.11.047