Advanced Evaluation of a Biomass Externally Fired Hydrogen Production Combined Cycle
Anahita Moharramian
University of Tabriz, Faculty of Mechanical Engineering, 16471 Tabriz, Iran
Search for more papers by this authorAmin Habibzadeh
University of Tabriz, Faculty of Mechanical Engineering, 16471 Tabriz, Iran
Search for more papers by this authorCorresponding Author
Saeed Soltani
University of Tabriz, Faculty of Mechanical Engineering, 16471 Tabriz, Iran
Correspondence: Saeed Soltani ([email protected]), Faculty of Mechanical Engineering, University of Tabriz, 16471 Tabriz, Iran.Search for more papers by this authorMarc A. Rosen
University of Ontario Institute of Technology, Faculty of Engineering and Applied Science, 2000 Simcoe Street North, L1H 7K4 Oshawa, Ontario, Canada
Search for more papers by this authorSeyed Mohammad Seyed Mahmoudi
University of Tabriz, Faculty of Mechanical Engineering, 16471 Tabriz, Iran
Search for more papers by this authorAnahita Moharramian
University of Tabriz, Faculty of Mechanical Engineering, 16471 Tabriz, Iran
Search for more papers by this authorAmin Habibzadeh
University of Tabriz, Faculty of Mechanical Engineering, 16471 Tabriz, Iran
Search for more papers by this authorCorresponding Author
Saeed Soltani
University of Tabriz, Faculty of Mechanical Engineering, 16471 Tabriz, Iran
Correspondence: Saeed Soltani ([email protected]), Faculty of Mechanical Engineering, University of Tabriz, 16471 Tabriz, Iran.Search for more papers by this authorMarc A. Rosen
University of Ontario Institute of Technology, Faculty of Engineering and Applied Science, 2000 Simcoe Street North, L1H 7K4 Oshawa, Ontario, Canada
Search for more papers by this authorSeyed Mohammad Seyed Mahmoudi
University of Tabriz, Faculty of Mechanical Engineering, 16471 Tabriz, Iran
Search for more papers by this authorAbstract
Hydrogen is produced by an externally fired combined cycle and can be consumed in different ways. For the present study, both common and realistic thermodynamic and exergoeconomic analyses were applied. With the realistic method, the results are not necessarily in accordance with common analyses. The compressor pressure ratio (rp) and the gas turbine inlet temperature (TIT) are the varying parameters in common analyses. Varying rp identifies optimum energy and exergy efficiencies. With the common exergy analysis, the gasifier and the heat recovery steam generator have low exergy efficiencies, but the modified analysis assigns high exergy efficiencies to them.
References
- 1 J. Kalina, Integrated biomass gasification combined cycle distributed generation plant with reciprocating gas engine and ORC, Appl. Therm. Eng. 2011, 31 (14–15), 2829–2840. DOI: https://doi.org/10.1016/j.applthermaleng.2011.05.008
- 2 R. W. Jackson, A. B. Ferreira Neto, E. Erfanian, Woody biomass processing: Potential economic impacts on rural regions, Energy Policy 2018, 115, 66–77. DOI: https://doi.org/10.1016/j.enpol.2018.01.001
- 3 T. K. Baul, D. Datta, A. Alam, A comparative study on household level energy consumption and related emissions from renewable (biomass) and non-renewable energy sources in Bangladesh, Energy Policy 2018, 114, 598–608. DOI: https://doi.org/10.1016/j.enpol.2017.12.037
- 4 M. A. Heredia Salgado, L. A. C. Tarelho, A. Matos, M. Robarina, R. Narvaez, M. E. Peralta, Thermoeconomic analysis of integrated production of biochar and process heat from quinoa and lupin residual biomass, Energy Policy 2018, 114, 332–341. DOI: https://doi.org/10.1016/j.enpol.2017.12.014
- 5 A. Demirbaş, Mechanisms of liquefaction and pyrolysis reactions of biomass, Energy Convers. Manage. 2000, 41 (6), 633–646. DOI: https://doi.org/10.1016/S0196-8904(99)00130-2
- 6 M. Varol, A. T. Atimtay, Combustion of olive cake and coal in a bubbling fluidized bed with secondary air injection, Fuel 2007, 86 (10–11), 1430–1438. DOI: https://doi.org/10.1016/j.fuel.2006.11.017
- 7 Z. T. Lian, K. J. Chua, S. K. Chou, A thermoeconomic analysis of biomass energy for trigeneration, Appl. Energy 2010, 87 (1), 84–95. DOI: https://doi.org/10.1016/j.apenergy.2009.07.003
- 8 E. B. Machin, D. T. Pedroso, A. B. Machin, D. G. Acosta, M. I. Silva dos Santos, F. S. de Carvalho, N. P. Perez, R. Pascual, J. A. de Carvalho Junior, Biomass integrated gasification-gas turbine combined cycle (BIG/GTCC) implementation in the Brazilian sugarcane industry: Economic and environmental appraisal, Renewable Energy 2021, 172, 529–540. DOI: https://doi.org/10.1016/j.renene.2021.03.074
- 9 Y. Xiang, L. Cai, Y. Guan, W. Liu, Z. Cheng, Z. Liu, Study on the effect of gasification agents on the integrated system of biomass gasification combined cycle and oxy-fuel combustion, Energy 2020, 206, 118131. DOI: https://doi.org/10.1016/j.energy.2020.118131
- 10 C. Y. Li, T. Deethayat, J. Y. Wu, T. Kiatsiriroat, R. Z. Wang, Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle, Energy 2018, 158, 238–255. DOI: https://doi.org/10.1016/j.energy.2018.05.206
- 11 G. Zang, S. Tejasvi, A. Ratner, E. S. Lora, A comparative study of biomass integrated gasification combined cycle power systems: Performance analysis, Bioresour. Technol. 2018, 255, 246–256. DOI: https://doi.org/10.1016/j.biortech.2018.01.093
- 12 K. Yang, N. Zhu, Y. Ding, C. Chang, T. Yuan, Thermoeconomic analysis of an integrated combined cooling heating and power system with biomass gasification, Energy Convers. Manage. 2018, 171, 671–682. DOI: https://doi.org/10.1016/j.enconman.2018.05.089
- 13 Y. Ji-chao, B. Sobhani, Integration of biomass gasification with a supercritical CO2 and Kalina cycles in a combined heating and power system: A thermodynamic and exergoeconomic analysis, Energy 2021, 222, 119980. DOI: https://doi.org/10.1016/j.energy.2021.119980
- 14 R. Amirante, P. De Palma, E. Distaso, P. Tamburrano, Thermodynamic analysis of small-scale externally fired gas turbines and combined cycles using turbo-compound components for energy generation from solid biomass, Energy Convers. Manage. 2018, 166, 648–662. DOI: https://doi.org/10.1016/j.enconman.2018.04.055
- 15 N. Nazari, S. Mousavi, S. Mirjalili, Exergo-economic analysis and multi-objective multi-verse optimization of a solar/biomass-based trigeneration system using externally fired gas turbine, organic Rankine cycle and absorption refrigeration cycle, Appl. Therm. Eng. 2021, 191, 116889. DOI: https://doi.org/10.1016/j.applthermaleng.2021.116889
- 16 M. N. Mohd Idris, H. Hashim, N. H. Razak, Spatial optimisation of oil palm biomass co-firing for emissions reduction in coal-fired power plant, J. Cleaner Prod. 2018, 172, 3428–3447. DOI: https://doi.org/10.1016/j.jclepro.2017.11.027
- 17 K. A. Al-attab, Z. A. Zainal, Externally fired gas turbine technology: A review, >Appl. Energy 2015, 138, 474–487. DOI: https://doi.org/10.1016/j.apenergy.2014.10.049
- 18 S. Soltani, S. M. S. Mahmoudi, M. Yari, M. A. Rosen, Thermodynamic analyses of an externally fired gas turbine combined cycle integrated with a biomass gasification plant, Energy Convers. Manage. 2013, 70, 107–115. DOI: https://doi.org/10.1016/j.enconman.2013.03.002
- 19 O. Siddiqui, I. Dincer, Design and assessment of a new solar-based biomass gasification system for hydrogen, cooling, power and fresh water production utilizing rice husk biomass, Energy Convers. Manage. 2021, 236, 114001. DOI: https://doi.org/10.1016/j.enconman.2021.114001
- 20 S. Piazzi, L. Menin, D. Antolini, F. Patuzzi, M. Baratieri, Potential to retrofit existing small-scale gasifiers through steam gasification of biomass residues for hydrogen and biofuels production, Int. J. Hydrogen Energy 2021, 46 (13), 8972–8985. DOI: https://doi.org/10.1016/j.ijhydene.2021.01.004
- 21 L. Cao, I. K. M. Yu, X. Xiong, D. C. W. Tsang, S. Zhang, J. H. Clark, C. Hu, Y. H. Ng, J. Shang, Y. S. Ok, Biorenewable hydrogen production through biomass gasification: A review and future prospects, Environ. Res. 2020, 186, 109547. DOI: https://doi.org/10.1016/j.envres.2020.109547
- 22 J. F. González, S. Román, D. Bragado, M. Calderón, Investigation on the reactions influencing biomass air and air/steam gasification for hydrogen production, Fuel Process. Technol. 2008, 89 (8), 764–772. DOI: https://doi.org/10.1016/j.fuproc.2008.01.011
- 23U.S. Department of Energy, Potential for hydrogen production from key renewable resources in the United States, Technical Report NREL/TP-640-41134, 2007, National Renewable Energy Laboratory Golden, CO, A. Milbrandt, M. Mann. http://www.afdc.energy.gov/afdc/pdfs/41134.pdf
- 24 E. S. Aydin, O. Yucel, H. Sadikoglu, Numerical and experimental investigation of hydrogen-rich syngas production via biomass gasification, Int. J. Hydrogen Energy 2018, 43 (2), 1105–1115. DOI: https://doi.org/10.1016/j.ijhydene.2017.11.013
- 25 A. Ersoz, Y. DurakÇetin, A. Sarıoğlan, A. Z. Turan, M. S. Mert, F. Yüksel, H. E. Figen, N. Ö. Güldal, M. Karaismailoğlu, S. Z. Baykara, Investigation of a novel and integrated simulation model for hydrogen production from lignocellulosic biomass, Int. J. Hydrogen Energy 2018, 43 (2), 1081–1093. DOI: https://doi.org/10.1016/j.ijhydene.2017.11.017
- 26 E. Akrami, A. Nemati, H. Nami, F. Ranjbar, Exergy and exergoeconomic assessment of hydrogen and cooling production from concentrated PVT equipped with PEM electrolyzer and LiBr-H2O absorption chiller, Int. J. Hydrogen Energy 2018, 43 (2), 622–633. DOI: https://doi.org/10.1016/j.ijhydene.2017.11.007
- 27 A. Moharamian, S. Soltani, M. A. Rosen, S. M. S. Mahmoudi, T. Morosuk, Exergoeconomic analysis of natural gas fired and biomass post-fired combined cycle with hydrogen injection into the combustion chamber, J. Cleaner Prod. 2018, 180, 450–465. DOI: https://doi.org/10.1016/j.jclepro.2018.01.156
- 28 G. Lazaroiu, E. Pop, G. Negreanu, I. Pisa, L. Mihaescu, A. Bondrea, V. Berbece, Biomass combustion with hydrogen injection for energy applications, Energy 2017, 127, 351–357. DOI: https://doi.org/10.1016/j.energy.2017.03.133
- 29 F. Ahmadi Boyaghchi, M. Chavoshi, V. Sabeti, Multi-generation system incorporated with PEM electrolyzer and dual ORC based on biomass gasification waste heat recovery: Exergetic, economic and environmental impact optimizations, Energy 2018, 145, 38–51. DOI: https://doi.org/10.1016/j.energy.2017.12.118
- 30 Q. Kang, R. Dewil, J. Degreve, J. Baeyens, H. Zhang, Energy analysis of a particle suspension solar combined cycle power plant, Energy Convers. Manage. 2018, 163, 292–303. DOI: https://doi.org/10.1016/j.enconman.2018.02.067
- 31 F. Calise, M. Dentice d'Accadia, L. Libertini, M. Vicidomini, Thermoeconomic analysis of an integrated solar combined cycle power plant, Energy Convers. Manage. 2018, 171, 1038–1051. DOI: https://doi.org/10.1016/j.enconman.2018.06.005
- 32 A. Moharamian, S. Soltani, M. A. Rosen, S. M. S. Mahmoudi, Advanced exergy and advanced exergoeconomic analyses of biomass and natural gas fired combined cycles with hydrogen production, Appl. Therm. Eng. 2018, 134, 1–11. DOI: https://doi.org/10.1016/j.applthermaleng.2018.01.103
- 33 Fundamentals of Engineering Thermodynamics (Eds: M. J. Moran, H. N. Shapiro, D. D. Boettner, M. B. Bailey), 7th ed., Wiley, New York 2011.
- 34 Thermal Design and Optimization (Eds: A. Bejan, G. Tsatsaronis, M. Moran), Wiley, New York 1996.
- 35 S. Jenkins, Economic Indicators, Chem. Eng. 2015, March. www.chemengonline.com/economic-indicators-cepci
- 36 G. Tsatsaronis, M. H. Park, On avoidable and unavoidable exergy destructions and investment costs in thermal systems, Energy Convers. Manage. 2002, 43, 1259–1270. DOI: https://doi.org/10.1016/S0196-8904(02)00012-2