Simulation of a Natural Gas Steam Reforming Plant for Hydrogen Production Optimization
Abeer M. Shoaib
Suez University, Faculty of Petroleum and Mining Engineering, 43512 Suez, Egypt
Search for more papers by this authorCorresponding Author
Amr F. M. Ibrahim
Suez University, Faculty of Petroleum and Mining Engineering, 43512 Suez, Egypt
Correspondence: Amr F. M. Ibrahim ([email protected]), Suez University, Faculty of Petroleum and Mining Engineering, Suez, 43512, Egypt.Search for more papers by this authorAbeer M. Shoaib
Suez University, Faculty of Petroleum and Mining Engineering, 43512 Suez, Egypt
Search for more papers by this authorCorresponding Author
Amr F. M. Ibrahim
Suez University, Faculty of Petroleum and Mining Engineering, 43512 Suez, Egypt
Correspondence: Amr F. M. Ibrahim ([email protected]), Suez University, Faculty of Petroleum and Mining Engineering, Suez, 43512, Egypt.Search for more papers by this authorAbstract
A simulation study to predict and optimize a natural gas steam reforming plant in Suez was performed. The developed model was used to generate performance data that would map the relation between atthe operating variables and hydrogen productivity. A single objective optimization problem was then formulated to maximize hydrogen production in the subunits: hydrocarbon prereformer, steam methane reformer, and the medium-temperature water-gas-shift reactor. The process temperature and pressure for the three subunits, total plant flow rate and total superheated steam flow rate were selected as decision variables. A good agreement was found between simulation results and plant data at steady-state conditions in terms of hydrogen yield and chemical composition. The developed mathematical model for hydrogen productivity correctly predicts the effect of relevant process parameters.
Supporting Information
Filename | Description |
---|---|
ceat202100123-sup-0001-misc_information.pdf488.4 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 I. Staffell, D. Scamman, A. Velazquez Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shah, K. R. Ward, Energy Environ. Sci. 2019, 12 (2), 463–491. DOI: https://doi.org/10.1039/C8EE01157E
- 2 S. Z. Baykara, Int. J. Hydrogen Energy 2018, 43 (23), 10605–10614. DOI: https://doi.org/10.1016/j.ijhydene.2018.02.022
- 3 M. Elsherif, Z. A. Manan, M. Z. Kamsah, J. Nat. Gas Sci. Eng. 2015, 24, 346–356. DOI: https://doi.org/10.1016/j.jngse.2015.03.046
- 4 M. Steinberg, H. C. Cheng, Int. J. Hydrogen Energy 1989, 14 (11), 797–820. DOI: https://doi.org/10.1016/0360-3199(89)90018-9
- 5 R. Chaubey, S. Sahu, O. O. James, S. Maity, Renewable Sustainable Energy Rev. 2013, 23, 443–462. DOI: https://doi.org/10.1016/j.rser.2013.02.019
- 6 F. Mueller-Langer, E. Tzimas, M. Kaltschmitt, S. Peteves, Int. J. Hydrogen Energy 2007, 32 (16), 3797–3810. DOI: https://doi.org/10.1016/j.ijhydene.2007.05.027
- 7 J. P. Van Hook, Catal. Rev. 1980, 21 (1), 1–51. DOI: https://doi.org/10.1080/03602458008068059
- 8 J. D. Holladay, J. Hu, D. L. King, Y. Wang, Catal. Today 2009, 139 (4), 244–260. DOI: https://doi.org/10.1016/j.cattod.2008.08.039
- 9 H. Jin, Y. Xu, R. Lin, W. Han, Int. J. Hydrogen Energy 2008, 33 (1), 9–19. DOI: https://doi.org/10.1016/j.ijhydene.2007.09.014
- 10 J. K. Rajesh, S. K. Gupta, G. P. Rangaiah, A. K. Ray, Ind. Eng. Chem. Res. 2000, 39 (3), 706–717. DOI: https://doi.org/10.1021/ie9905409
- 11 J. K. Rajesh, S. K. Gupta, G. P. Rangaiah, A. K. Ray, Chem. Eng. Sci. 2001, 56 (3), 999–1010. DOI: https://doi.org/10.1016/S0009-2509(00)00316-X
- 12 N. Hajjaji, V. Renaudin, A. Houas, M. N. Pons, Chem. Eng. Process. 2010, 49 (5), 500–507. DOI: https://doi.org/10.1016/j.cep.2010.03.017
- 13 B. Chen, Z. Liao, J. Wang, H. Yu, Y. Yang, Int. J. Hydrogen Energy 2012, 37 (4), 3191–3200. DOI: https://doi.org/10.1016/j.ijhydene.2011.10.102
- 14 M. Sinaei Nobandegani, M. R. Sardashti Birjandi, T. Darbandi, M. M. Khalilipour, F. Shahraki, D. Mohebbi-Kalhori, J. Nat. Gas Sci. Eng. 2016, 36, 540–549. DOI: https://doi.org/10.1016/j.jngse.2016.10.031
- 15 S. Z. Abbas, V. Dupont, T. Mahmud, Int. J. Hydrogen Energy 2017, 42 (30), 18910–18921. DOI: https://doi.org/10.1016/j.ijhydene.2017.05.222
- 16 M. Taji, M. Farsi, P. Keshavarz, Int. J. Hydrogen Energy 2018, 43 (29), 13110–13121. DOI: https://doi.org/10.1016/j.ijhydene.2018.05.094
- 17 C. B. Tarun, E. Croiset, P. L. Douglas, M. Gupta, M. H. M. Chowdhury, Int. J. Greenhouse Gas Control 2007, 1 (1), 55–61. DOI: https://doi.org/10.1016/S1750-5836(07)00036-9
- 18 A. Carrara, A. Perdichizzi, G. Barigozzi, Int. J. Hydrogen Energy 2010, 35 (8), 3499–3508. DOI: https://doi.org/10.1016/j.ijhydene.2009.12.156
- 19 M. Sarkarzadeh, M. Farsi, M. R. Rahimpour, Int. J. Hydrogen Energy 2019, 44 (21), 10415–10426. DOI: https://doi.org/10.1016/j.ijhydene.2019.02.206
- 20 A. M. El Hajj Chehade, E. A. Daher, J. C. Assaf, B. Riachi, W. Hamd, Int. J. Hydrogen Energy 2020, 45 (58), 33235–33247. DOI: https://doi.org/10.1016/j.ijhydene.2020.09.077
- 21 Z. Nasri, H. Binous, J. Chem. Eng. Jpn. 2007, 40 (6), 534–538. DOI: https://doi.org/10.1252/jcej.40.534
- 22
S. Dibyo, G. R. Sunaryo, S. Bakhri, Zuhair, I. D. Irianto, J. Phys. Conf. Ser.
2018, 962, 012052. DOI: https://doi.org/10.1088/1742-6596/962/1/012052
10.1088/1742-6596/962/1/012052 Google Scholar
- 23 A. Azizzadeh Fard, R. Arvaneh, S. M. Alavi, A. Bazyari, A. Valaei, Int. J. Hydrogen Energy 2019, 44 (39), 21607–21622. DOI: https://doi.org/10.1016/j.ijhydene.2019.06.100
- 24 B. T. Schädel, M. Duisberg, O. Deutschmann, Catal. Today 2009, 142 (1), 42–51. DOI: https://doi.org/10.1016/j.cattod.2009.01.008
- 25 W.-H. Chen, M.-R. Lin, T. L. Jiang, M.-H. Chen, Int. J. Hydrogen Energy 2008, 33 (22), 6644–6656. DOI: https://doi.org/10.1016/j.ijhydene.2008.08.039
- 26 E. Xue, M. O'Keeffe, J. R. H. Ross, Catal. Today 1996, 30 (1), 107–118. DOI: https://doi.org/10.1016/0920-5861(95)00323-1
- 27 D. L. Hoang, S. H. Chan, O. L. Ding, Chem. Eng. J. 2005, 112 (1), 1–11. DOI: https://doi.org/10.1016/j.cej.2005.06.004
- 28 X. Huang, R. Reimert, Fuel 2013, 106, 380–387. DOI: https://doi.org/10.1016/j.fuel.2012.09.081
- 29 M. de Jong, A. H. M. E. Reinders, J. B. W. Kok, G. Westendorp, Int J. Hydrogen Energy 2009, 34 (1), 285–292. DOI: https://doi.org/10.1016/j.ijhydene.2008.09.084
- 30 M. Chlendi, D. Tondeur, F. Rolland, Gas Sep. Purif. 1995, 9 (2), 125–135. DOI: https://doi.org/10.1016/0950-4214(95)93950-O