Effect of Citric Acid and Sodium Chloride on Characteristics of Sunflower Seed Shell-Derived Activated Carbon
Ayoob Bahiraei
Razi University, Advanced Chemical Engineering Research Center, Faculty of Petroleum and Chemical Engineering, Kermanshah, Iran
Search for more papers by this authorCorresponding Author
Jamshid Behin
Razi University, Advanced Chemical Engineering Research Center, Faculty of Petroleum and Chemical Engineering, Kermanshah, Iran
Correspondence: Jamshid Behin ([email protected]), Advanced Chemical Engineering Research Center, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran.Search for more papers by this authorAyoob Bahiraei
Razi University, Advanced Chemical Engineering Research Center, Faculty of Petroleum and Chemical Engineering, Kermanshah, Iran
Search for more papers by this authorCorresponding Author
Jamshid Behin
Razi University, Advanced Chemical Engineering Research Center, Faculty of Petroleum and Chemical Engineering, Kermanshah, Iran
Correspondence: Jamshid Behin ([email protected]), Advanced Chemical Engineering Research Center, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran.Search for more papers by this authorAbstract
Micro- and mesoporous activated carbons (ACs) with ultrahigh surface area were synthesized from sunflower seed shells (SSS) by carbonization followed by KOH activation. The effects of citric acid (CA) in both carbonization and activation and of sodium chloride (NaCl) in the activation step were evaluated through the response surface method. Na atoms produced during activation can diffuse in the carbon texture and intensify the role of K atoms in expanding and creating new microporosity, whereas its combination with CA results in a significant proportion of mesopores. CA sequestrates metal ions and facilitates the decomposition of lignocellulosics, which prevents the formation of heavy tar blocking the pores. A high capacity for CO2 adsorption was also observed for the NaCl-activated sample which was higher than that reported previously.
References
- 1 M. F. Hassan, M. A. Sabri, H. Fazal, A. Hafeez, N. Shahzad, M. Hussain, J. Anal. Appl. Pyrol. 2020, 145, 104715. DOI: https://doi.org/10.1016/j.jaap.2019.104715
- 2 A. Eftekhari, Z. Fan, Mater. Chem. Front. 2017, 1, 1001–1027. DOI: https://doi.org/10.1039/c6qm00298f
- 3 M. R. Benzigar, S. N. Talapaneni, S. Joseph, K. Ramadass, G. Singh, J. Scaranto, U. Ravon, K. Al-Bahily, A. Vinu, Chem. Soc. Rev. 2018, 47, 2680–2721. DOI: https://doi.org/10.1039/c7cs00787f
- 4 T. Uysal, G. Duman, Y. Onal, I. Yasa, J. Yanik, J. Anal. Appl. Pyrol. 2014, 108, 47–55. DOI: https://doi.org/10.1016/j.jaap.2014.05.017
- 5 M. M. Yeganeh, T. Kaghazchi, M. Soleimani, Chem. Eng. Technol. 2006, 29, 1245–1251. DOI: https://doi.org/10.1002/ceat.200500298
- 6 A. Heidari, H. Younesi, A. Rashidi, A. A. Ghoreyshi, J. Taiwan Inst. Chem. Eng. 2014, 45, 579–588. DOI: https://doi.org/10.1016/j.jtice.2013.06.007
- 7 J. H. Khan, F. Marpaung, C. Young, J. Lin, M. T. Islam, S. M. Alsheri, T. Ahamad, N. Alhokbany, K. Ariga, L. K. Shrestha, Y. Yamauchi, K. C.-W. Wu, M. S. A. Hossain, J. Kim, Microporous Mesoporous Mater. 2019, 274, 251–256. DOI: https://doi.org/10.1016/j.micromeso.2018.07.050
- 8 M. Nowrouzi, J. Behin, H. Younesi, N. Bahramifar, P. Charpentier, S. Rohani, Chem. Eng. J. 2017, 326, 934–944. DOI: https://doi.org/10.1016/j.cej.2017.05.141
- 9 C. Lu, S. Xu, C. Liu, J. Anal. Appl. Pyrol. 2010, 87, 282–287. DOI: https://doi.org/10.1016/j.jaap.2010.02.001
- 10 S. Zhang, S. Zhu, H. Zhang, X. Liu, Y. Xiong, J. Anal. Appl. Pyrol. 2020, 147, 104806. DOI: https://doi.org/10.1016/j.jaap.2020.104806
- 11 S. Yorgun, N. Vural, H. Demiral, Microporous Mesoporous Mater. 2009, 122, 189–194. DOI: https://doi.org/10.1016/j.micromeso.2009.02.032
- 12 O. Üner, T. Bayrak, Microporous Mesoporous Mater. 2018, 268, 225–234. DOI: https://doi.org/10.1016/j.micromeso.2018.04.037
- 13 C. Cheng, J. Zhang, Y. Mu, J. Gao, Y. Feng, H. Liu, Z. Guo, C. Zhang, J. Anal. Appl. Pyrol. 2014, 108, 41–46. DOI: https://doi.org/10.1016/j.jaap.2014.05.019
- 14 Y. Sun, G. Yang, Y. Wang, M. Yao, Chem. Eng. Technol. 2012, 35, 309–3016. DOI: https://doi.org/10.1002/ceat.201100309
- 15 J. Baek, H.-M. Lee, K.-H. An, B.-J. Kim, Carbon. Lett. 2019, 29, 393–399. DOI: https://doi.org/10.1007/s42823-019-00042-y
- 16 T. Brudey, L. Largittea, C. Jean-Marius, T. Tant, P. Couespel Dumesnil, P. Lodewyckx, J. Anal. Appl. Pyrol. 2016, 120, 450–463. DOI: https://doi.org/10.1016/j.jaap.2016.06.018
- 17 H. Sütcü, H. Demiral, J. Anal. Appl. Pyrol. 2009, 84, 47–52. DOI: https://doi.org/10.1016/j.jaap.2008.10.008
- 18
S. Maulina, G. Handika, JET
2019, 1, 30–35. DOI: https://doi.org/10.32734/jet.v1i1.685
10.32734/jet.v1i1.685 Google Scholar
- 19 L. Muniandy, F. Adam, A. R. Mohamed, E.–P. Ng, Microporous Mesoporous Mater. 2014, 197, 316–323. DOI: https://doi.org/10.1016/j.micromeso.2014.06.020
- 20 S. Dutta, J. Kim, Y. Ide, J. H. Kim, M. S. A. Hossain, Y. Bando, Y. Yamauchi, K. C.-W. Wu, Mater. Horiz. 2017, 4, 522–545. DOI: https://doi.org/10.1039/c6mh00500d
- 21 C. Arjmand, T. Kaghazch, S. M. Latifi, M. Soleimani, Chem. Eng. Technol. 2006, 29, 986–991. DOI: https://doi.org/10.1002/ceat.200500325
- 22 P. González-García, Renewable Sustainable Energy Rev. 2018, 82, 1393–1414. DOI: https://doi.org/10.1016/j.rser.2017.04.117
- 23 J. Pallarés, A. González-Cencerrado, I. Arauzo, Biomass Bioenergy 2018, 115, 64–73. DOI: https://doi.org/10.1016/j.biombioe.2018.04.015
- 24https://www.apk-inform.com/en/exclusive/topic/1504881. Topic: Russian sunflower seed & soybeans: new record in production.
- 25 X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S.-Z. Qiao, G.-Q. Lu, Bioresour. Technol. 2011, 102, 1118–1123. DOI: https://doi.org/10.1016/j.biortech.2010.08.110
- 26 T. H. Liou, Chem. Eng. J. 2010, 158, 129–142. DOI: https://doi.org/10.1016/j.cej.2009.12.016
- 27 S. Deng, B. Hu, T. Chen, B. Wang, J. Huang, Y. Wang, G. Yu, Adsorption 2015, 21, 125–133. DOI: https://doi.org/10.1007/s10450-015-9655-y
- 28ASTM D3172, Standard practice for proximate analysis of coal and coke, ASTM International, West Conshohocken, PA 19428-2959 United States 1–2. 2013. DOI: https://doi.org/10.1520/D3172-13
10.1520/D3172?13 Google Scholar
- 29 A. Dzigbor, A. Chimphango, Biomass Convers. Biorefin. 2019, 9, 421–431. DOI: https://doi.org/10.1007/s13399-018-0361-3
- 30 Z. N. Garba, Abdul-Rahim, J. Anal. Appl. Pyrol. 2014, 107, 306–312. DOI: https://doi.org/10.1016/j.jaap.2014.03.016
- 31 H. Nam, W. Choi, D. A. Genuino, S. C. Capareda, J. Environ. Chem. Eng. 2018, 6, 5221–5229. DOI: https://doi.org/10.1016/j.jece.2018.07.045
- 32 G. Zhu, X. Xing, J. Wang, X. Zhang, J. Mater. Sci. 2017, 52, 7664–7676. DOI: https://doi.org/10.1007/s10853-017-1055-0
- 33 M. Valix, W. H. Cheung, K. Zhang, Microporous Mesoporous Mater. 2008, 116, 513–523. DOI: https://doi.org/10.1016/j.micromeso.2008.05.020
- 34 J. Wang, P. Nie, B. Ding, S. Dong, X. Hao, H. Dou, X. Zhang, J. Mater. Chem. A 2017, 5, 2411–2428. DOI: https://doi.org/10.1039/C6TA08742F
- 35 M. Asadullah, M. Asaduzzaman, M. S. Kabir, M. G. Mostofa, T. Miyazawa, J. Hazard. Mater. 2010, 174, 437–443. DOI: https://doi.org/10.1016/j.jhazmat.2009.09.072
- 36 H. Dolas, O. Sahin, C. Saka, H. Demir, Chem. Eng. J. 2011, 166, 191–197. DOI: https://doi.org/10.1016/j.cej.2010.10.061
- 37 S. Das, S. Mishra, J. Environ. Chem. Eng. 2017, 5, 588–600. DOI: https://doi.org/10.1016/j.jece.2016.12.034
- 38 S. M. Kharrazi, N. Mirghaffari, M. M. Dastgerdi, M. Soleimani, Powder Technol. 2020, 336, 358–368. DOI: https://doi.org/10.1016/j.powtec.2020.01.065
- 39 R. R. Rajagopal, L. S. Aravinda, R. Rajarao, B. R. Bhat, V. Sahajwalla, Electrochim. Acta 2016, 211, 488–498. DOI: https://doi.org/10.1016/j.electacta.2016.06.077
- 40 J. Wang, Y. Xu, B. Ding, Z. Chang, X. Zhang, Y. Yamauchi, K. C.-W. Wu, Angew. Chem. Int. Ed. 2018, 57, 2894–2898. DOI: https://doi.org/10.1002/anie.201712959
- 41 D. Xin-hui, C. Srinivasakannan, P. Jin-hui, Z. Li-bo, Z. Zheng-yong, Fuel Process. Technol. 2011, 92, 394–400. DOI: https://doi.org/10.1016/j.fuproc.2010.09.033
- 42 J. Romanos, M. Beckner, T. Rash, L. Firlej, B. Kuchta, P. Yu, G. Suppes, C. Wexler, P. Pfeifer, Nanotechnology 2012, 23, 015401. DOI: https://doi.org/10.1088/0957-4484/23/1/015401
- 43 A. L. Cazetta, O. P. Junior, A. M. M. Vargas, A. P. da Silva, X. Zou, T. Asefa, V. C. Almeida, J. Anal. Appl. Pyrol. 2013, 101, 53–60. DOI: https://doi.org/10.1016/j.jaap.2013.02.013
- 44 C. Wang, J. Kim, J. Tang, M. Kim, H. Lim, V. Malgras, J. You, Q. Xu, J. Li, Y. Yamauchi, Chem 2020, 6, 19–40. DOI: https://doi.org/10.1016/j.chempr.2019.09.005
- 45 S. Zhang, W. Xia, Q. Yang, Y. V. Kaneti, X. Xu, S. M. Alshehri, T. Ahmad, M. S. A. Hossain, J. Na, J. Tang, Y. Yamauchi, Chem. Eng. J. 2020, 396, 125154. DOI: https://doi.org/10.1016/j.cej.2020.125154
- 46 J. Ren, Y. Huang, H. Zhu, B. Zhang, H. Zhu, S. Shen, G. Tan, F. Wu, H. He, S. Lan, X. Xia, Q. Liu., Carbon Energy 2020, 2, 176–202. DOI: https://doi.org/10.1002/cey2.44
- 47 H. Konnerth, B. M. Matsagar, S. S. Chen, M. H. G. Prechtl, F.-K. Shieh, K. C.-W. Wu, Coord. Chem. Rev. 2020, 416, 213319. DOI: https://doi.org/10.1016/j.ccr.2020.213319
- 48 T. Song, J. M. Liao, J. Xiao, L. H. Shen, New Carbon Mater. 2015, 30, 156–166. DOI: https://doi.org/10.1016/S1872-5805(15)60181-0
- 49 M. Sevilla, A. B. Fuertes, J. Colloid Interface Sci. 2012, 366, 147–154. DOI: https://doi.org/10.1016/j.jcis.2011.09.038
- 50 S. Acevedo, L. Giraldo, J. C. Moreno-Piraján, Int. J. Chem. React. Eng. 2018, 15, 1–11. DOI: https://doi.org/10.1515/ijcre-2017-0198