Polyacrylonitrile/α-Fe2O3 Hybrid Photocatalytic Composite Adsorbents for Enhanced Dye Removal
Seyed Mohammadreza Miraboutalebi
Iran University of Science and Technology (IUST), Center of Excellence for Membrane Research and Technology, Department of Chemical, Petroleum and Gas Engineering, 1684613114 Tehran, Iran
Search for more papers by this authorMohammad Peydayesh
Iran University of Science and Technology (IUST), Center of Excellence for Membrane Research and Technology, Department of Chemical, Petroleum and Gas Engineering, 1684613114 Tehran, Iran
Search for more papers by this authorMaryam Bagheri
Iran University of Science and Technology (IUST), Center of Excellence for Membrane Research and Technology, Department of Chemical, Petroleum and Gas Engineering, 1684613114 Tehran, Iran
Search for more papers by this authorCorresponding Author
Toraj Mohammadi
Iran University of Science and Technology (IUST), Center of Excellence for Membrane Research and Technology, Department of Chemical, Petroleum and Gas Engineering, 1684613114 Tehran, Iran
Correspondence: Toraj Mohammadi ([email protected]), Center of Excellence for Membrane Research and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran.Search for more papers by this authorSeyed Mohammadreza Miraboutalebi
Iran University of Science and Technology (IUST), Center of Excellence for Membrane Research and Technology, Department of Chemical, Petroleum and Gas Engineering, 1684613114 Tehran, Iran
Search for more papers by this authorMohammad Peydayesh
Iran University of Science and Technology (IUST), Center of Excellence for Membrane Research and Technology, Department of Chemical, Petroleum and Gas Engineering, 1684613114 Tehran, Iran
Search for more papers by this authorMaryam Bagheri
Iran University of Science and Technology (IUST), Center of Excellence for Membrane Research and Technology, Department of Chemical, Petroleum and Gas Engineering, 1684613114 Tehran, Iran
Search for more papers by this authorCorresponding Author
Toraj Mohammadi
Iran University of Science and Technology (IUST), Center of Excellence for Membrane Research and Technology, Department of Chemical, Petroleum and Gas Engineering, 1684613114 Tehran, Iran
Correspondence: Toraj Mohammadi ([email protected]), Center of Excellence for Membrane Research and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran.Search for more papers by this authorAbstract
The potential of a novel α-Fe2O3/polyacrylonitrile (PAN) hybrid composite adsorbent to eliminate methylene blue (MB) from aqueous solution was evaluated. PAN was selected as the base composite. The presence of α-Fe2O3 as nanophotocatalyst on the surface of PAN introduced an efficient photocatalytic hybrid composite adsorbent for degrading MB. Effects of α-Fe2O3 nanopowder loading, pH, temperature, MB initial concentration, solar light, and contact time were investigated. Langmuir, Freundlich, and Temkin isotherms were applied to analyze the adsorption behavior. The Freundlich equation provided the best correlation with experimental data. Pseudo-first-order, pseudo-second-order, and intraparticle models were employed. Thermodynamic studies indicated an endotherm and spontaneous adsorption process in a defined temperature range.
References
- 1 R. Saravanan, M. Mansoob Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, J. Colloid Interface Sci. 2015, 452, 126–133. DOI: https://doi.org/10.1016/j.jcis.2015.04.035
- 2 X. Yin, Z. Zhang, H. Ma, S. Venkateswaran, B. S. Hsiao, Sep. Purif. Technol. 2020, 242, 116794. DOI: https://doi.org/10.1016/j.seppur.2020.116794
- 3 S. Bolisetty, M. Peydayesh, R. Mezzenga, Chem. Soc. Rev. 2019, 48 (2), 463–487. DOI: https://doi.org/10.1039/C8CS00493E
- 4 M. Peydayesh, T. Mohammadi, O. Bakhtiari, J. Ind. Eng. Chem. 2019, 69, 127–140. DOI: https://doi.org/10.1016/j.jiec.2018.09.007
- 5 S. Zarghami, M. A. Tofighy, T. Mohammadi, J. Dispersion Sci. Technol. 2015, 36 (12), 1793–1798. DOI: https://doi.org/10.1080/01932691.2014.974814
- 6 M. Ahmadzadeh Tofighy, T. Mohammadi, Ceram. Int. 2015, 41 (4), 5464–5472. DOI: https://doi.org/10.1016/j.ceramint.2014.12.116
- 7 R. Saravanan, V. K. Gupta, V. Narayanan, A. Stephen, J. Taiwan Inst. Chem. Eng. 2014, 45 (4), 1910–1917. DOI: https://doi.org/10.1016/j.jtice.2013.12.021
- 8 S. P. D. Monte Blanco, F. B. Scheufele, A. N. Módenes, F. R. Espinoza-Quiñones, P. Marin, A. D. Kroumov, C. E. Borba, Chem. Eng. J. 2017, 307, 466–475. DOI: https://doi.org/10.1016/j.cej.2016.08.104
- 9 P. Kazemi, M. Peydayesh, A. Bandegi, T. Mohammadi, O. Bakhtiari, Chem. Pap. 2013, 67 (7), 722–729. DOI: https://doi.org/10.2478/s11696-013-0374-0
- 10 J. B. Lad, Y. T. Makkawi, Chem. Eng. Technol. 2020, 43 (3), 436–446. DOI: https://doi.org/10.1002/ceat.201900199
- 11 M. Peydayesh, M. K. Suter, S. Bolisetty, S. Boulos, S. Handschin, L. Nyström, R. Mezzenga, Adv. Mater. 2020, 32 (12), 1907932. DOI: https://doi.org/10.1002/adma.201907932
- 12 M. Peydayesh, T. Mohammadi, O. Bakhtiari, Sep. Purif. Technol. 2018, 194, 488–502. DOI: https://doi.org/10.1016/j.seppur.2017.11.070
- 13 H. R. Mahdavi, M. Arzani, M. Peydayesh, T. Mohammadi, Chem. Eng. Process. 2016, 106, 50–58. DOI: https://doi.org/10.1016/j.cep.2016.05.004
- 14 M. Peydayesh, S. Bolisetty, T. Mohammadi, R. Mezzenga, Langmuir 2019, 35 (11), 4161–4170. DOI: https://doi.org/10.1021/acs.langmuir.8b04234
- 15 Z. Heidari, R. Alizadeh, A. Ebadi, N. Oturan, M. A. Oturan, Sep. Purif. Technol. 2020, 242, 116800. DOI: https://doi.org/10.1016/j.seppur.2020.116800
- 16 S. M. Miraboutalebi, S. K. Nikouzad, M. Peydayesh, N. Allahgholi, L. Vafajoo, G. McKay, Process Saf. Environ. Prot. 2017, 106, 191–202. DOI: https://doi.org/10.1016/j.psep.2017.01.010
- 17 P. N. Egbuikwem, J. C. Mierzwa, D. P. Saroj, Agric. Water Manage. 2020, 231, 106034. DOI: https://doi.org/10.1016/j.agwat.2020.106034
- 18 C.-G. Lee, P. J. J. Alvarez, A. Nam, S.-J. Park, T. Do, U.-S. Choi, S.-H. Lee, J. Hazard. Mater. 2017, 325, 223–229. DOI: https://doi.org/10.1016/j.jhazmat.2016.12.003
- 19 S. Ma, X. Chen, B. Zhao, L. Li, W. Fu, Chem. Eng. Technol. 2018, 41 (1), 149–156. DOI: https://doi.org/10.1002/ceat.201600682
- 20 J. Chen, X. Wang, Y. Li, N. Zhang, M. Su, J. Han, Chem. Eng. Technol. 2018, 40 (7), 1347–1353. DOI: https://doi.org/10.1002/ceat.201600671
- 21 S. K. Lakhera, R. Venkataramana, A. Watts, M. Anpo, B. Neppolian, Res. Chem. Intermed. 2017, 43 (9), 5091–5102. DOI: https://doi.org/10.1007/s11164-017-3050-0
- 22 S. Rajamohan, V. Kumaravel, A. Abdel-Wahab, S. Ayyadurai, R. Muthuramalingam, Can. J. Chem. Eng. 2018, 96 (8), 1713–1722. DOI: https://doi.org/10.1002/cjce.23122
- 23 A. K. Patra, V. Amoli, A. K. Sinha, D. Kim, ChemCatChem, in press. DOI: https://doi.org/10.1002/cctc.201902070
- 24 C. Kim, K. M. Cho, K. Park, K. H. Kim, I. Gereige, H.-T. Jung, ChemPlusChem 2020, 85 (1), 169–175. DOI: https://doi.org/10.1002/cplu.201900688
- 25 A. Nel, T. Xia, L. Mädler, N. Li, Science 2006, 311 (5761), 622–627. DOI: https://doi.org/10.1126/science.1114397
- 26 Z. Li, Z. Jia, T. Ni, S. Li, J. Mol. Liq. 2017, 242, 747–756. DOI: https://doi.org/10.1016/j.molliq.2017.07.062
- 27 Z. Zhou, X.-F. Wu, Y. Ding, M. Yu, Y. Zhao, L. Jiang, C. Xuan, C. Sun, J. Appl. Polym. Sci. 2014, 131 (20), 40896. DOI: https://doi.org/10.1002/app.40896
- 28 R. Ghahremani, B. Baheri, M. Peydayesh, S. Asarehpour, T. Mohammadi, Res. Chem. Intermed. 2015, 41 (12), 9845–9862. DOI: https://doi.org/10.1007/s11164-015-1988-3
- 29 I. Chavez-Sumarriva, P. H. M. Van Steenberge, D. R. D'hooge, Ind. Eng. Chem. Res. 2016, 55 (35), 9387–9396. DOI: https://doi.org/10.1021/acs.iecr.6b02302
- 30 S. Mustafa, S. Tasleem, A. Naeem, J. Colloid Interface Sci. 2004, 275 (2), 523–529. DOI: https://doi.org/10.1016/j.jcis.2004.02.089
- 31 M. Dai, J. Colloid Interface Sci. 1994, 164 (1), 223–228. DOI: https://doi.org/10.1006/jcis.1994.1160
- 32 A. Aluigi, F. Rombaldoni, C. Tonetti, L. Jannoke, J. Hazard. Mater. 2014, 268, 156–165. DOI: https://doi.org/10.1016/j.jhazmat.2014.01.012
- 33 Y. S. Ho, G. McKay, Process Saf. Environ. Prot. 1998, 76 (4), 332–340. DOI: https://doi.org/10.1205/095758298529696
- 34 Y. S. Ho, G. McKay, Process Saf. Environ. Prot. 1998, 76 (2), 183–191. DOI: https://doi.org/10.1205/095758298529326
- 35 Y. S. Ho, G. McKay, Process Biochem. 1999, 34 (5), 451–465. DOI: https://doi.org/10.1016/S0032-9592(98)00112-5
- 36 G. McKay, M. S. Otterburn, J. A. Aga, Water, Air, Soil Pollut. 1987, 36 (3), 381–390. DOI: https://doi.org/10.1007/bf00229680
- 37 F.-C. Wu, R.-L. Tseng, R.-S. Juang, Chem. Eng. J. 2009, 153 (1–3), 1–8. DOI: https://doi.org/10.1016/j.cej.2009.04.042
- 38 R. Lakshmipathy, N. C. Sarada, Desalin. Water Treat. 2016, 57 (23), 10632–10645. DOI: https://doi.org/10.1080/19443994.2015.1040462
- 39 M. A. Tofighy, T. Mohammadi, Korean J. Chem. Eng. 2015, 32 (2), 292–298. DOI: https://doi.org/10.1007/s11814-014-0210-4
- 40 M. Peydayesh, M. Isanejad, T. Mohammadi, S. M. Reza Seyed Jafari, Chem. Pap. 2015, 69 (7), 930–937. DOI: https://doi.org/10.1515/chempap-2015-0097
- 41 F. M. Machado, S. A. Carmalin, E. C. Lima, S. L. P. Dias, L. D. T. Prola, C. Saucier, I. M. Jauris, I. Zanella, S. B. Fagan, J. Phys. Chem. C 2016, 120 (32), 18296–18306. DOI: https://doi.org/10.1021/acs.jpcc.6b03884
- 42 B. Baheri, R. Ghahremani, M. Peydayesh, M. Shahverdi, T. Mohammadi, Res. Chem. Intermed. 2016, 42 (6), 5309–5328. DOI: https://doi.org/10.1007/s11164-015-2362-1
- 43 C. Wan, Y. Jiao, T. Qiang, J. Li, Carbohydr. Polym. 2017, 156, 427–434. DOI: https://doi.org/10.1016/j.carbpol.2016.09.028
- 44 A. Javadi, Q. Zheng, F. Payen, A. Javadi, Y. Altin, Z. Cai, R. Sabo, S. Gong, ACS Appl. Mater. Interfaces 2013, 5 (13), 5969–5975. DOI: https://doi.org/10.1021/am400171y
- 45 B. S. Kaith, J. Dhiman, J. Kaur Bhatia, J. Environ. Chem. Eng. 2015, 3 (2), 1038–1046. DOI: https://doi.org/10.1016/j.jece.2015.03.001
- 46 O. Beswick, A. Parastaev, I. Yuranov, T. LaGrange, P. J. Dyson, L. Kiwi-Minsker, Catal. Today 2017, 279 (1), 29–35. DOI: https://doi.org/10.1016/j.cattod.2016.06.043