Microbial Fuel Cell Membrane Bioreactor in Wastewater Treatment, Electricity Generation and Fouling Mitigation
Rabialtu Sulihah Binti Ibrahim
Universiti Teknologi Malaysia, School of Chemical and Energy Engineering, Faculty of Engineering, 81310 Skudai, Johor, Malaysia
Search for more papers by this authorCorresponding Author
Zainura Zainon Noor
Universiti Teknologi Malaysia, School of Chemical and Energy Engineering, Faculty of Engineering, 81310 Skudai, Johor, Malaysia
Universiti Teknologi Malaysia, Centre of Environmental Sustainability and Water Security, 81310 Skudai, Johor, Malaysia
Correspondence: Zainura Zainon Noor ([email protected]), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.Search for more papers by this authorNurul Huda Baharuddin
Universiti Teknologi Malaysia, School of Chemical and Energy Engineering, Faculty of Engineering, 81310 Skudai, Johor, Malaysia
Search for more papers by this authorNoor Sabrina Ahmad Mutamim
Universiti Malaysia Pahang, Department of Chemical Engineering, Faculty of Chemical and Natural Resources Engineering, LebuhrayaTun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Search for more papers by this authorAdhi Yuniarto
Institut Teknologi Sepuluh Nopember, Department of Environmental Engineering, Faculty of Civil, Environmental and Geo-Engineering, Kampus ITS Sukolilo, 60111 Surabaya, Indonesia
Search for more papers by this authorRabialtu Sulihah Binti Ibrahim
Universiti Teknologi Malaysia, School of Chemical and Energy Engineering, Faculty of Engineering, 81310 Skudai, Johor, Malaysia
Search for more papers by this authorCorresponding Author
Zainura Zainon Noor
Universiti Teknologi Malaysia, School of Chemical and Energy Engineering, Faculty of Engineering, 81310 Skudai, Johor, Malaysia
Universiti Teknologi Malaysia, Centre of Environmental Sustainability and Water Security, 81310 Skudai, Johor, Malaysia
Correspondence: Zainura Zainon Noor ([email protected]), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.Search for more papers by this authorNurul Huda Baharuddin
Universiti Teknologi Malaysia, School of Chemical and Energy Engineering, Faculty of Engineering, 81310 Skudai, Johor, Malaysia
Search for more papers by this authorNoor Sabrina Ahmad Mutamim
Universiti Malaysia Pahang, Department of Chemical Engineering, Faculty of Chemical and Natural Resources Engineering, LebuhrayaTun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Search for more papers by this authorAdhi Yuniarto
Institut Teknologi Sepuluh Nopember, Department of Environmental Engineering, Faculty of Civil, Environmental and Geo-Engineering, Kampus ITS Sukolilo, 60111 Surabaya, Indonesia
Search for more papers by this authorAbstract
Membrane bioreactors (MBR) have gained much attention due to their ability to achieve higher treatment efficiency. However, high external energy consumption in aeration for membrane fouling mitigation has been limiting their application. Microbial fuel cells (MFC) can ideally extract energy from wastewater in the form of electricity and reduce membrane fouling. Thus, the use of MFC-MBR is rapidly expanding. However, the MFC-MBR design and operation is not fully mature and further research is needed to optimize the process efficiency and enhance the applicability. This review gives an overview of recent studies on the performances of MFC-MBR systems, regarding the design and configuration of the integrated system, irrespective of whether optimization was done or not in the operating system.
References
- 1 P. L. McCarty, J. Bae, J. Kim, Environ. Sci. Technol. 2011, 45 (17), 7100–7106. DOI: https://doi.org/10.1021/es2014264
- 2 B. E. Logan, Microbial Fuel Cells, John Wiley & Sons, New York 2008.
- 3 A. Murray, A. Horvath, K. L. Nelson, Environ. Sci. Technol. 2008, 42, 3163–3169. DOI: https://doi.org/10.1021/es702256w
- 4European Commission (EC), Directive 91/271 of 21 May 1991, Extensive wastewater treatment processes adapted to small and medium sized communities; in: Implementation of Council Directive 91/271 of 21 May 1991 Concerning Urban Waste Water Treatment, Publications Office of the EU, Luxembourg, 2001. http://ec.europa.eu/environment/water/water-urbanwaste/info/pdf/waterguide_en.pdf
- 5 M. A. Massoud, A. Tarhini, J. A. Nasr, J. Environ. Manage. 2009, 90, 652–659. DOI: https://doi.org/10.1016/j.jenvman.2008.07.001
- 6 D. R. Lovley, Curr. Opin. Biotechnol. 2008, 19 (6), 564–571. DOI: https://doi.org/10.1016/j.copbio.2008.10.005
- 7 Y. K. Wang, G. P. Sheng, W. W. Li, Y. X. Huang, Y. Y. Yu, R. J. Zeng, H. Q. Yu, Environ. Sci. Technol. 2011, 45 (21), 9256–9261. DOI: https://doi.org/10.1021/es2019803
- 8 J. C. Leyva-Díaz, M. M. Muñío, J. González-López, J. M. Poyatos, Ecol. Eng. 2016, 91, 449–458. DOI: https://doi.org/10.1016/j.ecoleng.2016.03.006
- 9 W. Guo, H. H. Ngo, J. Li, Bioresour. Technol. 2012, 122, 27–34. DOI: https://doi.org/10.1016/j.biortech.2012.04.089
- 10 W. Luo, F. I. Hai, W. E. Price, L. D. Nghiem, Sep. Sci. Technol. 2015, 145, 56–62. DOI: https://doi.org/10.1016/j.seppur.2015.02.044
- 11 M. Kraume, A. Drews, Chem. Eng. Technol. 2010, 33, 1251–1259. DOI: https://doi.org/10.1002/ceat.201000104
- 12 X. Wang, V. W. C. Chang, C. Y. Tang, J. Membr. Sci. 2016, 504, 113–132. DOI: https://doi.org/10.1016/j.memsci.2016.01.010
- 13 L. Huang, D. J. Lee, Bioresour. Technol. 2015, 194, 383–388. DOI: https://doi.org/10.1016/j.biortech.2015.07.013
- 14 P. Krzeminski, L. Leverette, S. Malamis, E. Katsou, J. Membr. Sci. 2017, 527, 207–227. DOI: https://doi.org/10.1016/j.memsci.2016.12.010
- 15 M. Kraume, R. Scheumann, A. Baban, B. El Hamouri, Desalination 2010, 250 (3), 1011–1013. DOI: https://doi.org/10.1016/j.desal.2009.09.093
- 16 A. E. Franks, K. P. Nevin, Energies 2010, 3 (5), 899–919. DOI: https://doi.org/10.3390/en3050899
- 17 Y. P. Wang, X. W. Liu, W. W. Li, F. Li, Y. K. Wang, G. P. Sheng, R. J. Zeng, Q. Y. Han, Appl. Energy 2012, 98, 230–235. DOI: https://doi.org/10.1016/j.apenergy.2012.03.029
- 18 J. Liu, L. Liu, B. Gao, F. Yang, J. Membr. Sci. 2013, 430 (suppl C), 196–202. DOI: https://doi.org/10.1016/j.memsci.2012.11.046
- 19 C. H. Neoh, Z. Z. Noor, N. S. A. Mutamim, C. K. Lim, Chem. Eng. J. 2016, 283, 582–594. DOI: https://doi.org/10.1016/j.cej.2015.07.060
- 20 C. Gao, L. Liu, F. Yang, Bioresour. Technol. 2017, 238, 472–483. DOI: https://doi.org/10.1016/j.biortech.2017.04.086
- 21 L. Malaeb, K. P. Katuri, B. E. Logan, H. Maab, S. P. Nunes, P. E. Saikaly, Environ. Sci. Technol. 2013, 47 (20), 11821–11828. DOI: https://doi.org/10.1021/es4030113
- 22
Biofilm and Materials Science (Eds: H. Kanematsu, D. M. Barry), Springer, Cham
2015. DOI: https://doi.org/10.1007/978-3-319-14565-5
10.1007/978-3-319-14565-5 Google Scholar
- 23 X. Su, Y. Tian, Z. Sun, Y. Lu, Z. Li, Biosens. Bioelectron. 2013, 49, 92–98. DOI: https://doi.org/10.1016/j.bios.2013.04.005
- 24 J. Wang, F. Bi, H. H. Ngo, W. Guo, H. Jia, H. Zhang, X. Zhang, Bioresour. Technol. 2016, 200, 420–425. DOI: https://doi.org/10.1016/j.biortech.2015.10.042
- 25 J. Li, S. Luo, Z. He, Sep. Purif. Technol. 2016, 169, 241–246. DOI: https://doi.org/10.1016/j.seppur.2016.06.014
- 26 J. Wang, Y. Zheng, H. Jia, H. Zhang, Bioresour. Technol. 2013, 149, 163–168. DOI: https://doi.org/10.1016/j.biortech.2013.09.055
- 27 Y. Li, L. Liu, J. Liu, F. Yang, N. Ren, Desalination 2014, 349, 94–101. DOI: https://doi.org/10.1016/j.desal.2014.06.027
- 28 N. Li, L. Liu, F. Yang, Sep. Purif. Technol. 2014, 132, 213–217. DOI: https://doi.org/10.1016/j.seppur.2014.05.028
- 29 G. Zhou, Y. Zhou, G. Zhou, L. Lu, X. Wan, H. Shi, Bioresour. Technol. 2015, 196, 648–655. DOI: https://doi.org/10.1016/j.biortech.2015.08.032
- 30 Y. Li, L. Liu, F. Yang, N. Ren, J. Membr. Sci. 2015, 484, 27–34. DOI: https://doi.org/10.1016/j.memsci.2015.03.006
- 31 Y. Tian, H. Li, L. Li, X. Su, Y. Lu, W. Zuo, J. Zhang, Biosens. Bioelectron. 2015, 64, 189–195. DOI: https://doi.org/10.1016/j.bios.2014.08.070
- 32 Y. Li, L. Liu, F. Yang, J. Membr. Sci. 2017, 525, 202–209. DOI: https://doi.org/10.1016/j.memsci.2016.10.047
- 33 C. Gao, L. Liu, F. Yang, Bioresour. Technol. 2018, 249, 24–34. DOI: https://doi.org/10.1016/j.biortech.2017.09.134
- 34 C. Gao, L. Liu, F. Yang, J. Power Sources 2018, 379, 123–133. DOI: https://doi.org/10.1016/j.jpowsour.2018.01.037
- 35 K. C. Ho, Y. H. Teow, W. L. Ang, A. W. Mohammad, J. Eng. Sci. Technol. Rev. 2017, 10 (3), 128–138. DOI: https://doi.org/10.25103/jestr.103.18
- 36 B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, K. Rabaey, Environ. Sci. Technol. 2006, 40 (17), 5181–5192. DOI: https://doi.org/10.1021/es0605016
- 37 Z. Lv, Y. Chen, H. Wei, F. Li, Y. Hu, C. Wei, C. Feng, Electrochim. Acta 2013, 111, 366–373. DOI: https://doi.org/10.1016/j.electacta.2013.08.022
- 38 F. J. Hernández-Fernández, A. P. De Los Ríos, M. J. Salar-García, V. M. Ortiz-Martínez, L. J. Lozano-Blanco, C. Godínez, F. Tomás-Alonso, J. Quesada-Medina, Fuel Process. Technol. 2015, 138, 284–297. DOI: https://doi.org/10.1016/j.fuproc.2015.05.022
- 39 Y. Feng, H. Lee, X. Wang, Y. Liu, W. He, Bioresour. Technol. 2010, 101 (2), 632–638. DOI: https://doi.org/10.1016/j.biortech.2009.08.046
- 40 C. Liu, J. Li, X. Zhu, L. Zhang, D. Ye, R. K. Brown, Q. Liao, Int. J. Hydrogen Energy 2013, 38 (35), 15646–15652. DOI: https://doi.org/10.1016/j.ijhydene.2013.03.144
- 41 Q. Liao, J. Zhang, J. Li, D. Ye, X. Zhu, B. Zhang, Biosens. Bioelectron. 2015, 63, 558–561. DOI: https://doi.org/10.1016/j.bios.2014.08.014
- 42 B. Logan, S. Cheng, V. Watson, G. Estadt, Environ. Sci. Technol. 2007, 41 (9), 3341–3346. DOI: https://doi.org/10.1021/es062644y
- 43 L. Xia, Q. Zhang, C. Wu, Y. Liu, M. Ding, J. Ye, Y. Cheng, C. Jia, Surf. Coat. Technol. 2019, 358, 153–158. DOI: https://doi.org/10.1016/j.surfcoat.2018.11.024
- 44 N. Zhu, X. Chen, T. Zhang, P. Wu, P. Li, J. Wu, Bioresour. Technol. 2011, 102 (1), 422–426. DOI: https://doi.org/10.1016/j.biortech.2010.06.046
- 45 K. Kordek, H. Yin, P. Rutkowski, H. Zhao, Int. J. Hydrogen Energy 2019, 44 (1), 23–33. DOI: https://doi.org/10.1016/j.ijhydene.2018.02.095
- 46 L. Wang, X. Gu, L. Zhao, B. Wang, C. Jia, J. Xu, Y. Zhao, J. Zhang, Electrochim. Acta 2019, 295, 107–112. DOI: https://doi.org/10.1016/j.electacta.2018.10.146
- 47 J. Kang, Q. Su, H. Feng, P. Huang, G. Du, B. Xu, Electrochim. Acta 2019, 301, 29–38. DOI: https://doi.org/10.1016/j.electacta.2019.01.136
- 48 K. B. Pu, Q. Ma, W. F. Cai, Q. Y. Chen, Y. H. Wang, F. J. Li, Biochem. Eng. J. 2018, 132, 255–261. DOI: https://doi.org/10.1016/j.bej.2018.01.018
- 49 X. Zhou, X. Chen, H. Li, J. Xiong, X. Li, W. Li, Electrochim. Acta 2016, 209, 582–590. DOI: https://doi.org/10.1016/j.electacta.2016.05.103
- 50 M. M. Mardanpour, S. Yaghmaei, Biosens. Bioelectron. 2016, 79, 327–333. DOI: https://doi.org/10.1016/j.bios.2015.12.022
- 51 A. Baudler, I. Schmidt, M. Langner, A. Greiner, U. Schröder, Energy Environ. Sci. 2015, 8 (7), 2048–2055. DOI: https://doi.org/10.1039/C5EE00866B
- 52 K. Guo, A. H. Soeriyadi, H. Feng, A. Prévoteau, S. A. Patil, J. J. Gooding, K. Rabaey, Bioresour. Technol. 2015, 195, 46–50. DOI: https://doi.org/10.1016/j.biortech.2015.06.060
- 53 N. Ohtsu, T. Kozuka, M. Hirano, H. Arai, Appl. Surf. Sci. 2015, 349, 911–915. DOI: https://doi.org/10.1016/j.apsusc.2015.05.046
- 54 L. Zhang, X. He, X. Xu, C. Liu, Y. Duan, L. Hou, Q. Zhou, C. Ma, X. Yang, R. Liu, F. Yang, Appl. Catal., B 2017, 203, 1–8. DOI: https://doi.org/10.1016/j.apcatb.2016.10.003
- 55 J. Huang, N. Zhu, T. Yang, T. Zhang, P. Wu, Z. Dang, Biosens. Bioelectron. 2015, 72, 332–339. DOI: https://doi.org/10.1016/j.bios.2015.05.035
- 56 S. A. Kumar, S. F. Wang, C. T. Yeh, H. C. Lu, J. C. Yang, Y. T. Chang, J. Solid State Electrochem. 2010, 14 (11), 2129–2135. DOI: https://doi.org/10.1007/s10008-010-1048-2
- 57 H. Momeneh, M. B. Gholivand, Anal. Biochem. 2018, 557, 97–103. DOI: https://doi.org/10.1016/j.ab.2018.07.014
- 58 T. Prasankumar, S. Karazhanov, S. P. Jose, Mater. Lett. 2018, 221, 179–182. DOI: https://doi.org/10.1016/j.matlet.2018.03.093
- 59 W. Yang, W. Yang, A. Song, L. Gao, G. Sun, G. Shao, J. Power Sources 2017, 348, 175–182. DOI: https://doi.org/10.1016/j.jpowsour.2017.03.008
- 60 X. Tang, H. Y. Ng, Bioresour. Technol. 2017, 244, 452–455. DOI: https://doi.org/10.1016/j.biortech.2017.07.189
- 61 B. Gao, Z. Safaei, I. Babu, S. Iftekhar, E. Iakovleva, V. Srivastava, B. Doshi, S. B. Hammouda, S. Kalliola, M. Sillanpää, J. Photochem. Photobiol. A 2017, 348, 150–160. DOI: https://doi.org/10.1016/j.jphotochem.2017.08.037
- 62 S. Orsetti, C. Laskov, S. B. Haderlein, Environ. Sci. Technol. 2013, 47 (24), 14161–14168. DOI: https://doi.org/10.1021/es403658g
- 63 F. Cao, T. X. Liu, C. Y. Wu, F. B. Li, X. M. Li, H. Y. Yu, H. Tong, M. J. Chen, J. Agric. Food Chem. 2012, 60 (45), 11238–11244. DOI: https://doi.org/10.1021/jf303610w
- 64 A. B. Dos Santos, F. J. Cervantes, J. B. Van Lier, Appl. Microbiol. Biotechnol. 2004, 64 (1), 62–69. DOI: https://doi.org/10.1007/s00253-003-1428-y
- 65 B. Lee, D. B. Buchholz, R. P. H. Chang, Energy Environ. Sci. 2012, 5 (5), 6941–6952. DOI: https://doi.org/10.1039/C2EE02950B
- 66 L. Xu, Y. Zhao, C. Tang, L. Doherty, J. Environ. Manage. 2018, 207, 116–123. DOI: https://doi.org/10.1016/j.jenvman.2017.11.035
- 67 H. Liu, S. Grot, B. E. Logan, Environ. Sci. Technol. 2005, 39 (11), 4317–4320. DOI: https://doi.org/10.1021/es050244p
- 68 W. W. Li, G. P. Sheng, X. W. Liu, H. Q. Yu, Bioresour. Technol. 2011, 102 (1), 244–252. DOI: https://doi.org/10.1016/j.biortech.2010.03.090
- 69 X. Zhang, S. Cheng, X. Wang, X. Huang, B. E. Logan, Environ. Sci. Technol. 2009, 43 (21), 8456–8461. DOI: https://doi.org/10.1021/es901631p
- 70 S. E. Oh, B. E. Logan, Appl. Microbiol. Biotechnol. 2006, 70 (2), 162–169. DOI: https://doi.org/10.1007/s00253-005-0066-y
- 71 A. Santos, W. Ma, S. J. Judd, Desalination 2011, 273 (1), 148–154. DOI: https://doi.org/10.1016/j.desal.2010.07.063
- 72 H. Ozgun, R. K. Dereli, M. E. Ersahin, C. Kinaci, H. Spanjers, J. B. van Lier, Sep. Purif. Technol. 2013, 118, 89–104. DOI: https://doi.org/10.1016/j.seppur.2013.06.036
- 73 H. Yuan, Z. He, Bioresour. Technol. 2015, 195, 202–209. DOI: https://doi.org/10.1016/j.biortech.2015.05.058
- 74 F. Zhang, M. D. Merrill, J. C. Tokash, T. Saito, S. Cheng, M. A. Hickner, B. E. Logan, J. Power Sources 2011, 196 (3), 1097–1102. DOI: https://doi.org/10.1016/j.jpowsour.2010.08.011
- 75 S. Judd, The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment, 2nd ed., Elsevier, Oxford 2010.
- 76 W. Zhu, X. Wang, Q. She, X. Li, Y. Ren, Chem. Eng. J. 2018, 337, 576–583. DOI: https://doi.org/10.1016/j.cej.2017.12.148
- 77 J. Li, Z. Ge, Z. He, Bioresour. Technol. 2014, 167, 310–315. DOI: https://doi.org/10.1016/j.biortech.2014.06.034
- 78 T. Wang, H. Zhao, H. Wang, B. Liu, C. Li, Chemosphere 2016, 155, 94–99. DOI: https://doi.org/10.1016/j.chemosphere.2016.03.140
- 79 G. D. Bhowmick, Performance evaluation of a two-stage wastewater treatment process combining microbial fuel cell and aerobic membrane bioreactor, Ph.D. Thesis, Institute of Technology, Kharagpur 2016.
- 80 S. Judd, The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment, 1st ed., Elsevier, Oxford 2006.
- 81 S. G. Ray, G. D. Bhowmick, M. M. Ghangrekar, A. Mitra, in 13th IWA Specialized Conference on Small Water and Wastewater Systems, Athens 2016.
- 82 Y. Dong, W. He, C. Li, D. Liang, Y. Qu, X. Han, Y. Feng, J. Power Sources 2018, 384, 178–186. DOI: https://doi.org/10.1016/j.jpowsour.2018.02.015