Evaluation of Scale and Corrosion Inhibition of Modified Polyaspartic Acid
Corresponding Author
Jianxin Chen
Hebei University of Technology, School of Chemical Engineering and Technology, 300130 Tianjin, China
Hebei University of Technology, National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, 300130 Tianjin, China
Correspondence: Jianxin Chen ([email protected]), Jian Han ([email protected]), School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China.Search for more papers by this authorFengjiang Chen
Hebei University of Technology, School of Chemical Engineering and Technology, 300130 Tianjin, China
Search for more papers by this authorCorresponding Author
Jian Han
Hebei University of Technology, School of Chemical Engineering and Technology, 300130 Tianjin, China
Correspondence: Jianxin Chen ([email protected]), Jian Han ([email protected]), School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China.Search for more papers by this authorMin Su
Hebei University of Technology, School of Chemical Engineering and Technology, 300130 Tianjin, China
Search for more papers by this authorYinhui Li
Hebei University of Technology, School of Chemical Engineering and Technology, 300130 Tianjin, China
Search for more papers by this authorCorresponding Author
Jianxin Chen
Hebei University of Technology, School of Chemical Engineering and Technology, 300130 Tianjin, China
Hebei University of Technology, National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, 300130 Tianjin, China
Correspondence: Jianxin Chen ([email protected]), Jian Han ([email protected]), School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China.Search for more papers by this authorFengjiang Chen
Hebei University of Technology, School of Chemical Engineering and Technology, 300130 Tianjin, China
Search for more papers by this authorCorresponding Author
Jian Han
Hebei University of Technology, School of Chemical Engineering and Technology, 300130 Tianjin, China
Correspondence: Jianxin Chen ([email protected]), Jian Han ([email protected]), School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China.Search for more papers by this authorMin Su
Hebei University of Technology, School of Chemical Engineering and Technology, 300130 Tianjin, China
Search for more papers by this authorYinhui Li
Hebei University of Technology, School of Chemical Engineering and Technology, 300130 Tianjin, China
Search for more papers by this authorAbstract
Amino acid modified polyaspartic acids were evaluated as calcium-scale inhibitors. Feasibility of scale inhibition experiments was analyzed by molecular dynamics simulation and Gaussian optimization, and the scale inhibition mechanism was theoretically analyzed. Scale inhibition performance was studied by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, static scale inhibition experiments, and electrochemical performance testing, which provided an experimental basis for the molecular dynamics simulation. The experimental results showed that Arg-SA-PASP has better scale inhibition and corrosion inhibition performance than His-SA-PASP. The scale inhibition effect increased with increasing concentration. Electrochemical tests indicated that Arg-SA-PASP is an excellent scale and corrosion inhibitor.
References
- 1 X. Ouyang, X. Qiu, H. Lou, D. Yang, Ind. Eng. Chem. Res. 2006, 45 (16), 5716–5721. DOI: https://doi.org/10.1021/ie0513189
- 2 M. K. Nayunigari, A. Maity, S. Agarwal, V. K. Gupta, J. Mol. Liq. 2016, 214, 400–410. DOI: https://doi.org/10.1016/j.molliq.2015.11.034
- 3 A. M. Alklaibi, N. Lior, Desalination 2005, 171 (2), 111–131. DOI: https://doi.org/10.1016/j.desal.2004.03.024
- 4 F. He, J. Gilron, H. Lee, L. Song, K. K. Sirkar, J. Membr. Sci. 2008, 311 (1–2), 68–80. DOI: https://doi.org/10.1016/j.memsci.2007.11.056
- 5 Y. Ji, Y. Chen, J. X. Le, M. Q. Qian, Y. Huan, W. Z. Yang, X. S. Yin, Y. Liu, X. R. Wang, Y. Z. Chen, Desalination 2017, 422, 165–173. DOI: https://doi.org/10.1016/j.desal.2017.08.027
- 6 C. G. Fu, Y. M. Zhou, H. T. Xie, W. Sun, W. D. Wu, Ind. Eng. Chem. Res. 2010, 49 (19), 8920–8926. DOI: https://doi.org/10.1021/ie100395z
- 7 J. Li, Y. M. Zhou, Q. Z. Yao, T. T. Wang, A. Zhang, Y. Y. Chen, W. D. Wu, W. Sun, Ind. Eng. Chem. Res. 2017, 56, 2624–2633. DOI: https://doi.org/10.1021/acs.iecr.6b04427
- 8 H. S. Li, W. Liu, X. J. Qi, Desalination 2007, 214 (1–3), 193–199. DOI: https://doi.org/10.1016/j.desal.2006.10.023
- 9 H. P. Wang, Q. Wu, C. M. Li, N. Gu, Mater. Corros. 2013, 64 (4), 347–352. DOI: https://doi.org/10.1002/maco.201106261
- 10 S. C. Shi, X. W. Zhao, Q. Wang, H. T. Shan, Y. Xu, RSC Adv. 2016, 6 (104), 102406–102412. DOI: https://doi.org/10.1039/c6ra22048g
- 11 D. E. Abd-El-Khalek, B. A. Abd-El-Nabey, M. A. Abdel-kawi, S. R. Ramadan, Desalin. Water Treat. 2016, 57 (7), 2870–2876. DOI: https://doi.org/10.1080/19443994.2014.987174
- 12 R. Touir, M. Cenoui, M. El Bakri, M. E. Touhami, Corrosion Sci. 2008, 50 (6), 1530–1537. DOI: https://doi.org/10.1016/j.corsci.2008.02.011
- 13 J. Y. Feng, L. J. Gao, R. Z. Wen, Y. Y. Deng, X. J. Wu, S. L. Deng, Desalination 2014, 345, 72–76. DOI: https://doi.org/10.1016/j.desal.2014.04.019
- 14 X. Y. Sun, J. P. Zhang, C. X. Yin, J. T. Zhang, J. Han, J. Appl. Polym. Sci. 2015, 132 (45). DOI: https://doi.org/10.1002/app.42739
- 15 S. Y. Dong, X. J. Yuan, S. L. Chen, L. L. Zhang, T. L. Huang, Ind. Eng. Chem. Res. 2018, 57 (42), 13952–13961. DOI: https://doi.org/10.1021/acs.iecr.8b03522
- 16 J. X. Chen, L. X. Xu, J. Han, M. Su, Q. Wu, Desalination 2015, 358, 42–48. DOI: https://doi.org/10.1016/j.desal.2014.11.010
- 17 K. Hu, J. Zhuang, J. T. Ding, Z. Ma, F. Wang, X. G. Zeng, Corrosion Sci. 2017, 125, 68–76. DOI: https://doi.org/10.1016/j.corsci.2017.06.004
- 18 Y. Xu, B. Zhang, L. L. Zhao, Y. C. Cui, Desalination 2013, 311, 156–161. DOI: https://doi.org/10.1016/j.desal.2012.11.026
- 19 C. Verma, L. O. Olasunkanmi, E. E. Ebenso, M. A. Quraishi, J. Mol. Liq. 2018, 251, 100–118. DOI: https://doi.org/10.1016/j.molliq.2017.12.055
- 20 A. M. Al-Sabagh, N. M. E. Basiony, S. A. Sadeek, M. A. Migahed, Desalination 2018, 437, 45–58. DOI: https://doi.org/10.1016/j.desal.2018.01.036
- 21 M. M. Solomon, H. Gerengi, S. A. Umoren, ACS Appl. Mater. Interfaces 2017, 9, 6376–6389. DOI: https://doi.org/10.1021/acsami.6b14153
- 22 A. A. Younes, H. H. El-Maghrabi, H. R. Ali, J. Hazard. Mater. 2017, 334, 1–9. DOI: https://doi.org/10.1016/j.jhazmat.2017.03.052
- 23 S. Borghei, C. Dehghanian, R. Yaghoubi, S. Yari, Res. Chem. Intermed. 2016, 42 (5), 4551–4568. DOI: https://doi.org/10.1007/s11164-015-2296-7
- 24 Y. Xu, L. N. Wang, L. L. Zhao, Y. C. Cui, Water Sci. Technol. 2011, 64 (2), 423–430. DOI: https://doi.org/10.2166/wst.2011.526
- 25 S. W. Xie, Z. Liu, G. C. Han, W. Li, J. Liu, Z. C. Chen, Comput. Theor. Chem. 2015, 1063, 50–62. DOI: https://doi.org/10.1016/j.comptc.2015.04.003
- 26 C. Y. Chen, W. Lei, M. Z. Xia, F. Y. Wang, X. D. Gong, Desalination 2013, 309, 208–212. DOI: https://doi.org/10.1016/j.desal.2012.10.012
- 27 Z. H. Quan, Y. C. Chen, X. R. Wang, C. Shi, Y. J. Liu, C. F. Ma, Sci. China, Ser. B: Chem. 2008, 51 (7), 695–699. DOI: https://doi.org/10.1007/s11426-008-0063-y
- 28 A. Ylikantola, J. Linnanto, J. Knuutinen, A. Oravilahti, M. Toivakka, Appl. Surf. Sci. 2013, 276, 43–52. DOI: https://doi.org/10.1016/j.apsusc.2013.02.122
- 29 Y. Ji, Y. Chen, J. X. Le, M. Q. Qian, Y. Huan, W. Z. Yang, X. S. Yin, Y. Liu, X. R. Wang, Y. Z. Chen, Desalination 2017, 422, 165–173. DOI: https://doi.org/10.1016/j.desal.2017.08.027
- 30 D. Aquilano, F. Otálora, L. Pastero, J. M. García-Ruiz, Prog. Cryst. Growth Charact. Mater. 2016, 62 (2), 227–251. DOI: https://doi.org/10.1016/j.perysgrow.2016.04.012
- 31 H. P. Zhang, X. G. Luo, X. Y. Lin, P. P. Tang, X. Lu, M. J. Yang, Y. Tang, Desalination 2016, 381, 1–7. DOI: https://doi.org/10.1016/j.desal.2015.11.029
- 32 S. Y. Jia, Z. Yang, K. X. Ren, Z. Q. Tian, C. Dong, R. X. Ma, G. Yu, W. B. Yang, J. Hazard. Mater. 2016, 317, 593–601. DOI: https://doi.org/10.1016/j.jhazmat.2016.06.024
- 33 H. H. Huang, Q. Yao, Q. Jiao, B. L. Liu, H. L. Chen, J. Saudi Chem. Soc. 2019, 23 (1), 61–74. DOI: https://doi.org/10.1016/j.jscs.2018.04.003
- 34 S. P. Zhang, H. J. Qu, Z. Yang, C. E. Fu, Z. Q. Tian, W. B. Yang, Desalination 2017, 419, 152–159. DOI: https://doi.org/10.1016/j.desal.2017.06.016
- 35 M. Su, Y. X. Bai, J. Han, J. X. Chen, H. Sun, J. Membr. Sci. 2018, 566, 104–111. DOI: https://doi.org/10.1016/j.memsci.2018.08.062
- 36 C. Wang, J. X. Chen, J. Han, C. B. Wang, B. S. Hu, J. Alloy. Compd. 2019, 771, 736–746. DOI: https://doi.org/10.1016/j.jallcom.2018.08.031
- 37 J. X. Chen, C. Wang, J. Han, B. S. Hu, C. B. Wang, Y. L. Zhong, H. Xu, J. Appl. Polym. Sci. 2019, 136 (15), 47242. DOI: https://doi.org/10.1002/APP.47242
- 38 J. X. Chen, H. Xu, J. Han, C. B. Wang, Q. Wu, C. L. Li, Chem. Eng. Technol. 2019, 42 (2), 444–453. DOI: https://doi.org/10.1002/ceat.201800417