Kinetic and CFD Modeling of Exhaust Gas Reforming of Natural Gas in a Catalytic Fixed-Bed Reactor for Spark Ignition Engines
Abdulwahid Arman
Universiti Malaysia Pahang, Advanced Fluids Focus Group, Faculty of Mechanical and Automotive Engineering Technology, 26600 Pekan, Pahang, Malaysia
Search for more papers by this authorCorresponding Author
Ftwi Yohaness Hagos
Universiti Malaysia Pahang, Advanced Fluids Focus Group, Faculty of Mechanical and Automotive Engineering Technology, 26600 Pekan, Pahang, Malaysia
Universiti Malaysia Pahang, Automotive Engineering Centre, 26600 Pahang, Pekan, Malaysia
Correspondence: Ftwi Yohaness Hagos ([email protected]), Advanced Fluids Focus Group, Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, Pekan, 26600, Pahang, MalaysiaSearch for more papers by this authorAbdul Adam Abdullah
Universiti Malaysia Pahang, Advanced Fluids Focus Group, Faculty of Mechanical and Automotive Engineering Technology, 26600 Pekan, Pahang, Malaysia
Universiti Malaysia Pahang, Automotive Engineering Centre, 26600 Pahang, Pekan, Malaysia
Search for more papers by this authorAbd Rashid Abd Aziz
Universiti Teknologi PETRONAS, Centre for Automotive Research and Electric Mobility, 31750 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorRizalman Mamat
Universiti Malaysia Pahang, Advanced Fluids Focus Group, Faculty of Mechanical and Automotive Engineering Technology, 26600 Pekan, Pahang, Malaysia
Universiti Malaysia Pahang, Automotive Engineering Centre, 26600 Pahang, Pekan, Malaysia
Search for more papers by this authorChin Kui Cheng
Universiti Malaysia Pahang, Faculty of Chemical & Natural Resources Engineering Technology, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang, Malaysia
Search for more papers by this authorDai-Viet N. Vo
Nguyen Tat Thanh University, Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), 300A Nguyen Tat Thanh, District 4, 755414 Ho Chi Minh City, Vietnam
Search for more papers by this authorAbdulwahid Arman
Universiti Malaysia Pahang, Advanced Fluids Focus Group, Faculty of Mechanical and Automotive Engineering Technology, 26600 Pekan, Pahang, Malaysia
Search for more papers by this authorCorresponding Author
Ftwi Yohaness Hagos
Universiti Malaysia Pahang, Advanced Fluids Focus Group, Faculty of Mechanical and Automotive Engineering Technology, 26600 Pekan, Pahang, Malaysia
Universiti Malaysia Pahang, Automotive Engineering Centre, 26600 Pahang, Pekan, Malaysia
Correspondence: Ftwi Yohaness Hagos ([email protected]), Advanced Fluids Focus Group, Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, Pekan, 26600, Pahang, MalaysiaSearch for more papers by this authorAbdul Adam Abdullah
Universiti Malaysia Pahang, Advanced Fluids Focus Group, Faculty of Mechanical and Automotive Engineering Technology, 26600 Pekan, Pahang, Malaysia
Universiti Malaysia Pahang, Automotive Engineering Centre, 26600 Pahang, Pekan, Malaysia
Search for more papers by this authorAbd Rashid Abd Aziz
Universiti Teknologi PETRONAS, Centre for Automotive Research and Electric Mobility, 31750 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorRizalman Mamat
Universiti Malaysia Pahang, Advanced Fluids Focus Group, Faculty of Mechanical and Automotive Engineering Technology, 26600 Pekan, Pahang, Malaysia
Universiti Malaysia Pahang, Automotive Engineering Centre, 26600 Pahang, Pekan, Malaysia
Search for more papers by this authorChin Kui Cheng
Universiti Malaysia Pahang, Faculty of Chemical & Natural Resources Engineering Technology, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang, Malaysia
Search for more papers by this authorDai-Viet N. Vo
Nguyen Tat Thanh University, Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), 300A Nguyen Tat Thanh, District 4, 755414 Ho Chi Minh City, Vietnam
Search for more papers by this authorAbstract
Fuel reforming is an attractive method for performance enhancement of internal combustion engines fueled by natural gas, since the syngas can be generated inline from the reforming process. In this study, 1D and 2D steady-state modeling of exhaust gas reforming of natural gas in a catalytic fixed-bed reactor were conducted under different conditions. With increasing engine speed, methane conversion and hydrogen production increased. Similarly, increasing the fraction of recirculated exhaust gas resulted in higher consumption of methane and generation of H2 and CO. Steam addition enhanced methane conversion. However, when the amount of steam exceeded that of methane, less hydrogen was produced. Increasing the wall temperature increased the methane conversion and reduced the H2/CO ratio.
References
- 1 L. Tartakovsky, M. Sheintuch, Prog. Energy Combust. Sci. 2018, 67, 88–114. DOI: https://doi.org/10.1016/j.pecs.2018.02.003
- 2 İ. Altın, A. Bilgin, B. A. Çeper, Energy 2017, 139, 1237–1242. DOI: https://doi.org/10.1016/j.energy.2017.04.026
- 3 M. P. Hekkert, F. H. J. F. Hendriks, A. P. C. Faaij, M. L. Neelis, Energy Policy 2005, 33 (5), 579–594. DOI: https://doi.org/10.1016/j.enpol.2003.08.018
- 4 J. W. Ke Zeng, Zuohua Huang, Bing Liu, Liangxin Liu, Deming Jiang, Yi Ren, Appl. Therm. Eng. 26. 2006, 26, 806–813. DOI: https://doi.org/10.1016/j.applthermaleng.2005.10.011
- 5 H. A. Alrazen, K. A. Ahmad, Renewable Sustainable Energy Rev. 2018, 82, 324–342. DOI: https://doi.org/10.1016/j.rser.2017.09.035
- 6 K. Ravindra, E. Wauters, S. K. Tyagi, S. Mor, R. Van Grieken, Environ. Monit. Assess. 2006, 115 (1–3), 405–417. DOI: https://doi.org/10.1007/s10661-006-7051-5
- 7 C. G. Fotache, T. G. Kreutz, C. K. Law, Combust. Flame 1997, 110 (4), 429–440. DOI: https://doi.org/10.1016/S0010-2180(97)00084-9
- 8 B. Açikgöz, C. Çelik, H. S. Soyhan, B. Gökalp, B. Karabağ, Fuel 2015, 159, 298–307. DOI: https://doi.org/10.1016/j.fuel.2015.06.043
- 9 M. Kamil, M. M. Rahman, Appl. Energy 2015, 158, 556–567. DOI: https://doi.org/10.1016/j.apenergy.2015.08.041
- 10 Z. H. He, Z. Gao, L. Zhu, S. Li, A. Li, W. Zhang, Z. Huang, Fuel 2016, 183, 230–237. DOI: https://doi.org/10.1016/j.fuel.2016.06.077
- 11 S. Raviteja, G. N. Kumar, Int. J. Hydrogen Energy 2015, 40 (30), 9563–9569. DOI: https://doi.org/10.1016/j.ijhydene.2015.05.171
- 12 A. Iulianelli, P. Ribeirinha, A. Mendes, A. Basile, Renewable Sustainable Energy Rev. 2014, 29, 355–368. DOI: https://doi.org/10.1016/j.rser.2013.08.032
- 13 F. Y. Hagos, A. R. A. Aziz, S. A. Sulaiman, Int. J. Hydrogen Energy 2014, 39 (31), 17884–17895. DOI: https://doi.org/10.1016/j.ijhydene.2014.08.141
- 14 Changpeng Liu, Z. Wang, H. Song, Y. Qi, Y. L. A, F. Li, W. Zhang, X. He, Energy 2018, 143, 597–605. DOI: https://doi.org/10.1016/j.energy.2017.11.024
- 15 H. J. Alves, C. Bley Junior, R. R. Niklevicz, E. P. Frigo, M. S. Frigo, C. H. Coimbra-Araújo, Int. J. Hydrogen Energy 2013, 38 (13), 5215–5225. DOI: https://doi.org/10.1016/j.ijhydene.2013.02.057
- 16 Y. Kathiraser, U. Oemar, E. T. Saw, Z. Li, S. Kawi, Chem. Eng. J. 2015, 278, 62–78. DOI: https://doi.org/10.1016/j.cej.2014.11.143
- 17
V. Subramani, P. Sharma, L. Zhang, K. Liu, in Hydrogen and Syngas Production and Purification Technologies (Eds: K. Liu, C. Song, V. Subramani), John Wiley & Sons, Hoboken
2009, Ch. 2, 14–126.
10.1002/9780470561256.ch2 Google Scholar
- 18 M. H. Halabi, M. H. J. M. De Croon, J. Van Der Schaaf, P. D. Cobden, J. C. Schouten, Chem. Eng. J. 2008, 137, 568–578. DOI: https://doi.org/10.1016/j.cej.2007.05.019
- 19 F. Y. Hagos, A. R. A. Aziz, S. A. Sulaiman, F. Firmansyah, J. Appl. Sci. 2012, 12 (23), 2368–2375.
- 20 J. Xu, G. F. Froment, AIChE J. 1989, 35 (1), 88–96. DOI: https://doi.org/10.1002/aic.690350109
- 21 D. L. Trimm, C.-W. Lam, Chem. Eng. Sci. 1980, 35 (6), 1405–1413. DOI: https://doi.org/10.1016/0009-2509(80)85134-7
- 22 Z. A. Aboosadi, A. H. Jahanmiri, M. R. Rahimpour, Appl. Energy 2011, 88 (8), 2691–2701. DOI: https://doi.org/10.1016/j.apenergy.2011.02.017
- 23 J. R. Fernandez, J. C. Abanades, R. Murillo, Chem. Eng. Sci. 2012, 84, 1–11. DOI: https://doi.org/10.1016/j.ces.2012.07.039
- 24 M. Farniaei, M. Abbasi, H. Rahnama, M. Reza, J. Nat. Gas Sci. Eng. 2014, 20, 132–146. DOI: https://doi.org/10.1016/j.jngse.2014.06.010
- 25 M. A. Murmura, M. Diana, R. Spera, M. C. Annesini, Chem. Eng. Process. Process Intensif. 2016, 109, 125–135. DOI: https://doi.org/10.1016/j.cep.2016.08.019
- 26 M. Taji, M. Farsi, P. Keshavarz, Int. J. Hydrogen Energy 2018, 43 (29), 13110–13121. DOI: https://doi.org/10.1016/j.ijhydene.2018.05.094
- 27 M. Sadeghi, M. Jafari, M. Yari, S. M. S. Mahmoudi, J. CO2 Util. 2018, 25, 283–301. DOI: https://doi.org/10.1016/j.jcou.2018.04.009
- 28 K. Gosiewski, U. Bartmann, M. Moszczyński, L. Mleczko, Chem. Eng. Sci. 1999, 54 (20), 4589–4602.
- 29 R. Schwiedernoch, S. Tischer, C. Correa, O. Deutschmann, Chem. Eng. Sci. 2003, 58 (3–6), 633–642. DOI: https://doi.org/10.1016/S0009-2509(02)00589-4
- 30Ansys Inc., ANSYS 17.1 Doc. 2016, 15317 (April), 850.
- 31 A. Schneider, J. Mantzaras, P. Jansohn, Chem. Eng. Sci. 2006, 61 (14), 4634–4649. DOI: https://doi.org/10.1016/j.ces.2006.02.038
- 32 P. S. Bulutoglu, S. Koc, A. K. Avci, Int. J. Hydrogen Energy 2015, 41 (19), 8184–8192. DOI: https://doi.org/10.1016/j.ijhydene.2015.10.126
- 33 Z. Zhang, P. Jia, S. Feng, J. Liang, Y. Long, G. Li, Chem. Eng. Sci. 2018, 191, 200–207. DOI: https://doi.org/10.1016/j.ces.2018.06.061