Effect of Supports and Promoters on the Performance of Ni-Based Catalysts in Ethanol Steam Reforming
Corresponding Author
Thanh Khoa Phung
International University, School of Biotechnology, Ho Chi Minh City, Vietnam
Vietnam National University, Ho Chi Minh City, Vietnam
Correspondence: Thanh Khoa Phung ([email protected]), School of Biotechnology, International University, Ho Chi Minh City, Vietnam.Search for more papers by this authorThong Le Minh Pham
Duy Tan University, Institute of Research and Development, 550000 Da Nang City, Vietnam
Search for more papers by this authorAnh-Nga T. Nguyen
Ton Duc Thang University, Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ho Chi Minh City, Vietnam
Search for more papers by this authorKhanh B. Vu
International University, School of Biotechnology, Ho Chi Minh City, Vietnam
Vietnam National University, Ho Chi Minh City, Vietnam
Search for more papers by this authorHa Ngoc Giang
Ho Chi Minh City University of Food Industry, Department of Chemical Engineering, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Binh District, Ho Chi Minh City, Vietnam
Search for more papers by this authorTuan-Anh Nguyen
Ho Chi Minh City University of Technology, Faculty of Chemical Engineering, VNU-HCM, 268 Ly Thuong Kiet, Ho Chi Minh City, Vietnam
Search for more papers by this authorThanh Cong Huynh
Institute of Applied Material Science, Organic Material Department, Ho Chi Minh City, Vietnam
Search for more papers by this authorHong Duc Pham
Queensland University of Technology (QUT), Institute of Future Environment, School of Chemistry, Physics and Mechanical Engineering, 2 George Street, Brisbane, Australia
Search for more papers by this authorCorresponding Author
Thanh Khoa Phung
International University, School of Biotechnology, Ho Chi Minh City, Vietnam
Vietnam National University, Ho Chi Minh City, Vietnam
Correspondence: Thanh Khoa Phung ([email protected]), School of Biotechnology, International University, Ho Chi Minh City, Vietnam.Search for more papers by this authorThong Le Minh Pham
Duy Tan University, Institute of Research and Development, 550000 Da Nang City, Vietnam
Search for more papers by this authorAnh-Nga T. Nguyen
Ton Duc Thang University, Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ho Chi Minh City, Vietnam
Search for more papers by this authorKhanh B. Vu
International University, School of Biotechnology, Ho Chi Minh City, Vietnam
Vietnam National University, Ho Chi Minh City, Vietnam
Search for more papers by this authorHa Ngoc Giang
Ho Chi Minh City University of Food Industry, Department of Chemical Engineering, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Binh District, Ho Chi Minh City, Vietnam
Search for more papers by this authorTuan-Anh Nguyen
Ho Chi Minh City University of Technology, Faculty of Chemical Engineering, VNU-HCM, 268 Ly Thuong Kiet, Ho Chi Minh City, Vietnam
Search for more papers by this authorThanh Cong Huynh
Institute of Applied Material Science, Organic Material Department, Ho Chi Minh City, Vietnam
Search for more papers by this authorHong Duc Pham
Queensland University of Technology (QUT), Institute of Future Environment, School of Chemistry, Physics and Mechanical Engineering, 2 George Street, Brisbane, Australia
Search for more papers by this authorAbstract
Ethanol steam reforming (ESR) is one of the potential processes to convert ethanol into valuable products. Hydrogen produced from ESR is considered as green energy for the future and can be an excellent alternative to fossil fuels with the aim of mitigating the greenhouse gas effect. The ESR process has been well studied, using transition metals as catalysts coupled with both acidic and basic oxides as supports. Among various reported transition metals, Ni is an inexpensive material with activity comparable to that of noble metals, showing promising ethanol conversion and hydrogen yields. Additionally, different promoters and supports were utilized to enhance the hydrogen yield and the catalyst stability. This review summarizes and discusses the influences of the supports and promoters of Ni-based catalysts on the ESR process.
Supporting Information
Filename | Description |
---|---|
ceat201900445-sup-0001-misc_information.pdf109 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 A. Di Michele, A. Dell'Angelo, A. Tripodi, E. Bahadori, F. Sànchez, D. Motta, N. Dimitratos, I. Rossetti, G. Ramis, Int. J. Hydrogen Energy 2019, 44 (2), 952–964. DOI: https://doi.org/10.1016/j.ijhydene.2018.11.048
- 2 F. Birol, The Future of Hydrogen, Vol. 2019 (in series), The International Energy Agency, Paris 2019. www.iea.org/reports/the-future-of-hydrogen
- 3
P. Häussinger, R. Lohmüller, A. M. Watson, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim
2000.
10.1002/14356007.a13_297 Google Scholar
- 4 A. Kovač, D. Marciuš, L. Budin, Int. J. Hydrogen Energy 2019, 44 (20), 9841–9848. DOI: https://doi.org/10.1016/j.ijhydene.2018.11.007
- 5
S. Shiva Kumar, V. Himabindu, Mater. Sci. Energy Technol.
2019, 2 (3), 442–454. DOI: https://doi.org/10.1016/j.mset.2019.03.002
10.1016/j.mset.2019.03.002 Google Scholar
- 6 P. Zhao, L. Wang, Y. Wu, T. Yang, Y. Ding, H. G. Yang, A. Hu, Macromolecules 2019, 52 (11), 4376–4384. DOI: https://doi.org/10.1021/acs.macromol.9b00551
- 7 P. Ganguly, M. Harb, Z. Cao, L. Cavallo, A. Breen, S. Dervin, D. D. Dionysiou, S. C. Pillai, ACS Energy Lett. 2019, 4 (7), 1687–1709. DOI: https://doi.org/10.1021/acsenergylett.9b00940
- 8 J. A. Calles, A. Carrero, A. J. Vizcaíno, P. J. Megía, Int. J. Hydrogen Energy, in press. DOI: https://doi.org/10.1016/j.ijhydene.2019.05.237
- 9 I. Iglesias, G. Baronetti, L. Alemany, F. Mariño, Int. J. Hydrogen Energy 2019, 44 (7), 3668–3680. DOI: https://doi.org/10.1016/j.ijhydene.2018.12.112
- 10 V. V. Thyssen, D. M. Sartore, E. M. Assaf, J. Energy Inst. 2019, 92 (4), 947–958. DOI: https://doi.org/10.1016/j.joei.2018.07.010
- 11 N. Phongprueksathat, V. Meeyoo, T. Rirksomboon, Int. J. Hydrogen Energy 2019, 44 (18), 9359–9367. DOI: https://doi.org/10.1016/j.ijhydene.2019.02.085
- 12 D. S. Lima, C. O. Calgaro, O. W. Perez-Lopez, Biomass Bioenergy 2019, 130, 105358. DOI: https://doi.org/10.1016/j.biombioe.2019.105358
- 13 R. Balzarotti, M. Ambrosetti, A. Beretta, G. Groppi, E. Tronconi, Chem. Eng. J., in press. DOI: https://doi.org/10.1016/j.cej.2019.123494
- 14 S. Ogo, Y. Sekine, Fuel Process. Technol. 2020, 199, 106238. DOI: https://doi.org/10.1016/j.fuproc.2019.106238
- 15 C. H. Campos, G. Pecchi, J. L. G. Fierro, P. Osorio-Vargas, Mol. Catal. 2019, 469, 87–97. DOI: https://doi.org/10.1016/j.mcat.2019.03.007
- 16 J. Li, X. Mei, L. Zhang, Z. Yu, Q. Liu, T. Wei, W. Wu, D. Dong, L. Xu, X. Hu, Int. J. Hydrogen Energy 2020, 45 (6), 3815–3832. DOI: https://doi.org/10.1016/j.ijhydene.2019.03.269
- 17 N. D. Charisiou, G. Siakavelas, L. Tzounis, B. Dou, V. Sebastian, S. J. Hinder, M. A. Baker, K. Polychronopoulou, M. A. Goula, Int. J. Hydrogen Energy, in press. DOI: https://doi.org/10.1016/j.ijhydene.2019.04.237
- 18 G. Garbarino, T. Cavattoni, P. Riani, R. Brescia, F. Canepa, G. Busca, Catal. Lett. 2019, 149 (4), 929–941. DOI: https://doi.org/10.1007/s10562-019-02688-9
- 19 P. Yang, N. Li, J. Teng, J. Wu, H. Ma, J. Rare Earths 2019, 37 (6), 594–601. DOI: https://doi.org/10.1016/j.jre.2018.10.014
- 20 V. Vazquez Thyssen, E. Moreira Assaf, Fuel 2019, 254, 115592. DOI: https://doi.org/10.1016/j.fuel.2019.05.175
- 21 C. Cerdá-Moreno, J. F. Da Costa-Serra, A. Chica, Int. J. Hydrogen Energy 2019, 44 (25), 12685–12692. DOI: https://doi.org/10.1016/j.ijhydene.2019.01.156
- 22 G. Birol, Z. İ. Önsan, B. Kırdar, S. G. Oliver, Enzyme Microb. Technol. 1998, 22 (8), 672–677. DOI: https://doi.org/10.1016/S0141-0229(97)00244-5
- 23 B. Bulawayo, J. M. Bvochora, M. I. Muzondo, R. Zvauya, World J. Microbiol. Biotechnol. 1996, 12 (4), 357–360. DOI: https://doi.org/10.1007/BF00340211
- 24 C.-F. Huang, T.-H. Lin, G.-L. Guo, W.-S. Hwang, Bioresour. Technol. 2009, 100 (17), 3914–3920. DOI: https://doi.org/10.1016/j.biortech.2009.02.064
- 25 L. Olsson, B. Hahn-Hägerdal, Enzyme Microb. Technol. 1996, 18 (5), 312–331. DOI: https://doi.org/10.1016/0141-0229(95)00157-3
- 26Global Ethanol Production for Fuel Use from 2000 to 2017 (in Million Cubic Meters), Vol. 2019 (in series), Statista, New York 2019. www.statista.com/statistics/274142/global-ethanolproduction-since-2000/.
- 27 B. E. Poling, J. M. Prausnitz, J. P. O'Connell, The Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York 2001.
- 28 S. J. Han, J. H. Song, Y. Bang, J. Yoo, S. Park, K. H. Kang, I. K. Song, Int. J. Hydrogen Energy 2016, 41 (4), 2554–2563. DOI: https://doi.org/10.1016/j.ijhydene.2015.11.128
- 29 M. Chen, Y. Wang, Z. Yang, T. Liang, S. Liu, Z. Zhou, X. Li, Fuel 2018, 220, 32–46. DOI: https://doi.org/10.1016/j.fuel.2018.02.013
- 30 M. Dan, M. Mihet, Z. Tasnadi-Asztalos, A. Imre-Lucaci, G. Katona, M. D. Lazar, Fuel 2015, 147, 260–268. DOI: https://doi.org/10.1016/j.fuel.2015.01.050
- 31 C. Diagne, H. Idriss, K. Pearson, M. A. Gómez-García, A. Kiennemann, C. R. Chim. 2004, 7 (6), 617–622. DOI: https://doi.org/10.1016/j.crci.2004.03.004
- 32 F. Auprêtre, C. Descorme, D. Duprez, Catal. Commun. 2002, 3 (6), 263–267. DOI: https://doi.org/10.1016/S1566-7367(02)00118-8
- 33 W.-C. Chiu, R.-F. Horng, H.-M. Chou, Int. J. Hydrogen Energy 2013, 38 (6), 2760–2769.
- 34 A. Erdőhelyi, J. Raskó, T. Kecskés, M. Tóth, M. Dömök, K. Baán, Catal. Today 2006, 116 (3), 367–376. DOI: https://doi.org/10.1016/j.cattod.2006.05.073
- 35 F. Frusteri, S. Freni, L. Spadaro, V. Chiodo, G. Bonura, S. Donato, S. Cavallaro, Catal. Commun. 2004, 5 (10), 611–615. DOI: https://doi.org/10.1016/j.catcom.2004.07.015
- 36 D. K. Liguras, D. I. Kondarides, X. E. Verykios, Appl. Catal., B 2003, 43 (4), 345–354. DOI: https://doi.org/10.1016/S0926-3373(02)00327-2
- 37 S. Abelló, E. Bolshak, D. Montané, Appl. Catal., A 2013, 450, 261–274. DOI: https://doi.org/10.1016/j.apcata.2012.10.035
- 38 F. N. Agüero, M. R. Morales, S. Larrégola, E. M. Izurieta, E. Lopez, L. E. Cadús, Int. J. Hydrogen Energy 2015, 40 (45), 15510–15520. DOI: https://doi.org/10.1016/j.ijhydene.2015.08.051
- 39 C. Anjaneyulu, L. O. O. da Costa, M. C. Ribeiro, R. C. Rabelo-Neto, L. V. Mattos, A. Venugopal, F. B. Noronha, Appl. Catal., A 2016, 519, 85–98. DOI: https://doi.org/10.1016/j.apcata.2016.03.008
- 40 D. G. Araiza, A. Gómez-Cortés, G. Díaz, Catal. Today, in press. DOI: https://doi.org/10.1016/j.cattod.2018.03.016
- 41 S. Bepari, S. Basu, N. C. Pradhan, A. K. Dalai, Catal. Today 2017, 291, 47–57. DOI: https://doi.org/10.1016/j.cattod.2017.01.027
- 42 R. Buitrago-Sierra, J. Ruiz-Martinez, J. C. Serrano-Ruiz, F. Rodriguez-Reinoso, A. Sepulveda-Escribano, J. Colloid Interface Sci. 2012, 383 (1), 148–154. DOI: https://doi.org/10.1016/j.jcis.2012.06.026
- 43 A. J. Akande, R. O. Idem, A. K. Dalai, Appl. Catal., A 2005, 287 (2), 159–175. DOI: https://doi.org/10.1016/j.apcata.2005.03.046
- 44 J. Comas, F. Mariño, M. Laborde, N. Amadeo, Chem. Eng. J. 2004, 98 (1), 61–68. DOI: https://doi.org/10.1016/S1385-8947(03)00186-4
- 45 M. A. Ebiad, D. R. A. El-Hafiz, R. A. Elsalamony, L. S. Mohamed, RSC Adv. 2012, 2 (21), 8145–8156.
- 46 A. N. Fatsikostas, X. E. Verykios, J. Catal. 2004, 225 (2), 439–452. DOI: https://doi.org/10.1016/j.jcat.2004.04.034
- 47 A. C. Furtado, C. G. Alonso, M. P. Cantão, N. R. C. Fernandes-Machado, Int. J. Hydrogen Energy 2009, 34 (17), 7189–7196. DOI: https://doi.org/10.1016/j.ijhydene.2009.06.060
- 48 A. E. Galetti, M. F. Gomez, L. A. Arrua, M. C. Abello, Appl. Catal., A 2011, 408 (1), 78–86. DOI: https://doi.org/10.1016/j.apcata.2011.09.006
- 49 J.-Y. Liu, C.-C. Lee, C.-H. Wang, C.-T. Yeh, C.-B. Wang, Int. J. Hydrogen Energy 2010, 35 (9), 4069–4075. DOI: https://doi.org/10.1016/j.ijhydene.2010.01.141
- 50 J. Sun, X.-P. Qiu, F. Wu, W.-T. Zhu, Int. J. Hydrogen Energy 2005, 30 (4), 437–445. DOI: https://doi.org/10.1016/j.ijhydene.2004.11.005
- 51 G. Garbarino, C. Wang, I. Valsamakis, S. Chitsazan, P. Riani, E. Finocchio, M. Flytzani-Stephanopoulos, G. Busca, Appl. Catal., B 2015, 174–175, 21–34. DOI: https://doi.org/10.1016/j.apcatb.2015.02.024
- 52 A. Machocki, A. Denis, W. Grzegorczyk, W. Gac, Appl. Surf. Sci. 2010, 256 (17), 5551–5558. DOI: https://doi.org/10.1016/j.apsusc.2009.12.137
- 53Commodity and Metal Prices, Vol. 2019 (in series), InfoMine, Vancouver, BC 2019. www.infomine.com/investment/metal-prices/
- 54 J. Calles, A. Carrero, A. Vizcaíno, M. Lindo, Catalysts 2015, 5 (1), 58–76. DOI: https://doi.org/10.3390/catal5010058
- 55 R. l. Carrera Cerritos, R. Fuentes Ramírez, A. F. Aguilera Alvarado, J. M. Martínez Rosales, T. Viveros García, I. R. Galindo Esquivel, Ind. Eng. Chem. Res. 2011, 50 (5), 2576–2584. DOI: https://doi.org/10.1021/ie100636f
- 56 J. Y. Z. Chiou, C. L. Lai, S.-W. Yu, H.-H. Huang, C.-L. Chuang, C.-B. Wang, Int. J. Hydrogen Energy 2014, 39 (35), 20689–20699. DOI: https://doi.org/10.1016/j.ijhydene.2014.07.141
- 57 D. Chen, W. Wang, C. Liu, Int. J. Hydrogen Energy 2019, 44 (13), 6560–6572. DOI: https://doi.org/10.1016/j.ijhydene.2019.01.204
- 58 S. J. Han, Y. Bang, J. H. Song, J. Yoo, S. Park, K. H. Kang, I. K. Song, Catal. Today 2016, 265, 103–110. DOI: https://doi.org/10.1016/j.cattod.2015.07.041
- 59 S. J. Han, Y. Bang, J. Yoo, J. G. Seo, I. K. Song, Int. J. Hydrogen Energy 2013, 38 (20), 8285–8292. DOI: https://doi.org/10.1016/j.ijhydene.2013.04.141
- 60 S. He, Z. Mei, N. Liu, L. Zhang, J. Lu, X. Li, J. Wang, D. He, Y. Luo, Int. J. Hydrogen Energy 2017, 42 (21), 14429–14438. DOI: https://doi.org/10.1016/j.ijhydene.2017.02.115
- 61 J. H. Song, S. J. Han, J. Yoo, S. Park, D. H. Kim, I. K. Song, J. Mol. Catal. A: Chem. 2016, 424, 342–350. DOI: https://doi.org/10.1016/j.molcata.2016.09.013
- 62 S. J. Han, Y. Bang, J. Yoo, K. H. Kang, J. H. Song, J. G. Seo, I. K. Song, Int. J. Hydrogen Energy 2013, 38 (35), 15119–15127. DOI: https://doi.org/10.1016/j.ijhydene.2013.09.114
- 63 S. J. Han, Y. Bang, J. Yoo, S. Park, K. H. Kang, J. H. Choi, J. H. Song, I. K. Song, Int. J. Hydrogen Energy 2014, 39 (20), 10445–10453. DOI: https://doi.org/10.1016/j.ijhydene.2014.05.014
- 64 J. H. Song, S. J. Han, J. Yoo, S. Park, D. H. Kim, I. K. Song, J. Mol. Catal. A: Chem. 2016, 415, 151–159. DOI: https://doi.org/10.1016/j.molcata.2016.02.010
- 65 J. H. Song, S. J. Han, J. Yoo, S. Park, D. H. Kim, I. K. Song, J. Mol. Catal. A: Chem. 2016, 418–419, 68–77. DOI: https://doi.org/10.1016/j.molcata.2016.03.035
- 66 J. H. Song, S. Yoo, J. Yoo, S. Park, M. Y. Gim, T. H. Kim, I. K. Song, Mol. Catal. 2017, 434, 123–133. DOI: https://doi.org/10.1016/j.mcat.2017.03.009
- 67 S. He, S. He, L. Zhang, X. Li, J. Wang, D. He, J. Lu, Y. Luo, Catal. Today 2015, 258, 162–168. DOI: https://doi.org/10.1016/j.cattod.2015.04.031
- 68 T. Hou, S. Zhang, Y. Chen, D. Wang, W. Cai, Renewable Sustainable Energy Rev. 2015, 44, 132–148. DOI: https://doi.org/10.1016/j.rser.2014.12.023
- 69 Z. Yaakob, A. Bshish, A. Ebshish, S. M. Tasirin, F. H. Alhasan, Materials 2013, 6 (6), 2229–2239. DOI: https://doi.org/10.3390/ma6062229
- 70 G. T. Wurzler, R. C. Rabelo-Neto, L. V. Mattos, M. A. Fraga, F. B. Noronha, Appl. Catal., A 2016, 518, 115–128. DOI: https://doi.org/10.1016/j.apcata.2015.11.020
- 71 C. Wu, V. Dupont, M. A. Nahil, B. Dou, H. Chen, P. T. Williams, J. Energy Inst. 2017, 90 (2), 276–284. DOI: https://doi.org/10.1016/j.joei.2016.01.002
- 72 A. Vizcaino, P. Arena, G. Baronetti, A. Carrero, J. Calles, M. Laborde, N. Amadeo, Int. J. Hydrogen Energy 2008, 33 (13), 3489–3492. DOI: https://doi.org/10.1016/j.ijhydene.2007.12.012
- 73 A. Rodriguez-Gomez, A. Caballero, Mol. Catal. 2018, 449, 122–130. DOI: https://doi.org/10.1016/j.mcat.2018.02.011
- 74 N. Li, J. Pu, B. Chi, J. Li, Mater. Today Energy 2019, 12, 371–378. DOI: https://doi.org/10.1016/j.mtener.2019.04.002
- 75 T. S. Rodrigues, A. B. L. de Moura, F. A. de Silva, E. G. Candido, A. G. M. da Silva, D. C. de Oliveira, J. Quiroz, P. H. C. Camargo, V. S. Bergamaschi, J. C. Ferreira, M. Linardi, F. C. Fonseca, Fuel 2019, 237, 1244–1253. DOI: https://doi.org/10.1016/j.fuel.2018.10.053
- 76 K. F. M. Elias, A. F. Lucrédio, E. M. Assaf, Int. J. Hydrogen Energy 2013, 38 (11), 4407–4417. DOI: https://doi.org/10.1016/j.ijhydene.2013.01.162
- 77 D. Li, L. Zeng, X. Li, X. Wang, H. Ma, S. Assabumrungrat, J. Gong, Appl. Catal., B 2015, 176–177, 532–541. DOI: https://doi.org/10.1016/j.apcatb.2015.04.020
- 78 S. Moogi, I.-G. Lee, J.-Y. Park, Int. J. Hydrogen Energy 2019, 44 (56), 29537–29546. DOI: https://doi.org/10.1016/j.ijhydene.2019.03.053
- 79 Z. Xue, Y. Shen, P. Li, Y. Pan, J. Li, Z. Feng, Y. Zhang, Y. Zeng, Y. Liu, S. Zhu, Catal. Commun. 2018, 108, 12–16. DOI: https://doi.org/10.1016/j.catcom.2018.01.024
- 80 L. P. R. Profeti, J. A. C. Dias, J. M. Assaf, E. M. Assaf, J. Power Sources 2009, 190 (2), 525–533. DOI: https://doi.org/10.1016/j.jpowsour.2008.12.104
- 81 P. R. de la Piscina, N. Homs, Chem. Soc. Rev. 2008, 37 (11), 2459–2467. DOI: https://doi.org/10.1039/B712181B
- 82 M. Ni, D. Y. C. Leung, M. K. H. Leung, Int. J. Hydrogen Energy 2007, 32 (15), 3238–3247. DOI: https://doi.org/10.1016/j.ijhydene.2007.04.038
- 83 A. M. da Silva, L. O. O. da Costa, K. R. Souza, L. V. Mattos, F. B. Noronha, Catal. Commun. 2010, 11 (8), 736–740. DOI: https://doi.org/10.1016/j.catcom.2010.02.005
- 84 G. Özkan, B. Şahbudak, G. Özkan, Int. J. Hydrogen Energy 2019, 44 (20), 9823–9829. DOI: https://doi.org/10.1016/j.ijhydene.2018.11.198
- 85 O. O. James, S. Maity, M. A. Mesubi, K. O. Ogunniran, T. O. Siyanbola, S. Sahu, R. Chaubey, Green Chem. 2011, 13 (9), 2272. DOI: https://doi.org/10.1039/c0gc00924e
- 86 L. V. Mattos, G. Jacobs, B. H. Davis, F. B. Noronha, Chem. Rev. 2012, 112 (7), 4094–4123. DOI: https://doi.org/10.1021/cr2000114
- 87 S. D. Davidson, H. Zhang, J. Sun, Y. Wang, Dalton Trans. 2014, 43 (31), 11782–11802. DOI: https://doi.org/10.1039/c4dt00521j
- 88 J. L. Contreras, J. Salmones, J. A. Colín-Luna, L. Nuño, B. Quintana, I. Córdova, B. Zeifert, C. Tapia, G. A. Fuentes, Int. J. Hydrogen Energy 2014, 39 (33), 18835–18853. DOI: https://doi.org/10.1016/j.ijhydene.2014.08.072
- 89 D. Zanchet, J. B. O. Santos, S. Damyanova, J. M. R. Gallo, J. M. C. Bueno, ACS Catal. 2015, 5 (6), 3841–3863. DOI: https://doi.org/10.1021/cs5020755
- 90 W. Fang, S. Paul, M. Capron, F. Dumeignil, L. Jalowiecki-Duhamel, Appl. Catal., B 2014, 152–153, 370–382. DOI: https://doi.org/10.1016/j.apcatb.2014.01.056
- 91 L. J. I. Coleman, W. Epling, R. R. Hudgins, E. Croiset, Appl. Catal., A 2009, 363 (1–2), 52–63. DOI: https://doi.org/10.1016/j.apcata.2009.04.032
- 92 M. C. Sanchez-Sanchez, R. M. Navarro, J. L. G. Fierro, Catal. Today 2007, 129 (3–4), 336–345. DOI: https://doi.org/10.1016/j.cattod.2006.10.013
- 93 T. K. Phung, L. P. Hernández, G. Busca, Appl. Catal., A 2015, 489, 180–187. DOI: https://doi.org/10.1016/j.apcata.2014.10.025
- 94 T. K. Phung, L. Proietti Hernández, A. Lagazzo, G. Busca, Appl. Catal., A 2015, 493, 77–89. DOI: https://doi.org/10.1016/j.apcata.2014.12.047
- 95 P. Osorio-Vargas, N. A. Flores-González, R. M. Navarro, J. L. G. Fierro, C. H. Campos, P. Reyes, Catal. Today 2016, 259, 27–38. DOI: https://doi.org/10.1016/j.cattod.2015.04.037
- 96 M. Lindo, A. J. Vizcaíno, J. A. Calles, A. Carrero, Int. J. Hydrogen Energy 2010, 35 (11), 5895–5901. DOI: https://doi.org/10.1016/j.ijhydene.2009.12.120
- 97 K. Wang, B. Dou, B. Jiang, Q. Zhang, M. Li, H. Chen, Y. Xu, Int. J. Hydrogen Energy 2016, 41 (39), 17334–17347. DOI: https://doi.org/10.1016/j.ijhydene.2016.07.261
- 98 J. Llorca, N. Homs, J. Sales, J.-L. G. Fierro, P. Ramírez de la Piscina, J. Catal. 2004, 222 (2), 470–480. DOI: https://doi.org/10.1016/j.jcat.2003.12.008
- 99 H. Muroyama, R. Nakase, T. Matsui, K. Eguchi, Int. J. Hydrogen Energy 2010, 35 (4), 1575–1581. DOI: https://doi.org/10.1016/j.ijhydene.2009.12.083
- 100 N. Prasongthum, R. Xiao, H. Zhang, N. Tsubaki, P. Natewong, P. Reubroycharoen, Fuel Process. Technol. 2017, 160, 185–195. DOI: https://doi.org/10.1016/j.fuproc.2017.02.036
- 101 S. Wang, B. He, R. Tian, C. Sun, R. Dai, X. Li, X. Wu, X. An, X. Xie, Mol. Catal. 2018, 453, 64–73. DOI: https://doi.org/10.1016/j.mcat.2018.04.034
- 102 W. Gac, M. Greluk, G. Słowik, Y. Millot, L. Valentin, S. Dzwigaj, Appl. Catal., B 2018, 237, 94–109. DOI: https://doi.org/10.1016/j.apcatb.2018.05.040
- 103 A. J. Vizcaíno, M. Lindo, A. Carrero, J. A. Calles, Int. J. Hydrogen Energy 2012, 37 (2), 1985–1992. DOI: https://doi.org/10.1016/j.ijhydene.2011.04.179
- 104 L. Zhao, T. Han, H. Wang, L. Zhang, Y. Liu, Appl. Catal., B 2016, 187, 19–29. DOI: https://doi.org/10.1016/j.apcatb.2016.01.007
- 105 C. M. A. Parlett, A. Aydin, L. J. Durndell, L. Frattini, M. A. Isaacs, A. F. Lee, X. Liu, L. Olivi, R. Trofimovaite, K. Wilson, C. Wu, Catal. Commun. 2017, 91, 76–79. DOI: https://doi.org/10.1016/j.catcom.2016.12.021
- 106 A. C. V. Olivares, M. F. Gomez, M. N. Barroso, M. C. Abello, Int. J. Ind. Chem. 2018, 9 (1), 61–73. DOI: https://doi.org/10.1007/s40090-018-0135-6
- 107 T. Mondal, K. K. Pant, A. K. Dalai, Appl. Catal., A 2015, 499, 19–31. DOI: https://doi.org/10.1016/j.apcata.2015.04.004
- 108 F. Menegazzo, C. Pizzolitto, D. Zanardo, M. Signoretto, C. Buysschaert, G. Bény, A. Di Michele, ChemistrySelect 2017, 2 (29), 9523–9531. DOI: https://doi.org/10.1002/slct.201702053
- 109 T. Li, J. Zhang, X. Xie, X. Yin, X. An, Fuel 2015, 143, 55–62. DOI: https://doi.org/10.1016/j.fuel.2014.11.033
- 110 V. Nichele, M. Signoretto, F. Pinna, F. Menegazzo, I. Rossetti, G. Cruciani, G. Cerrato, A. Di Michele, Appl. Catal., B 2014, 150–151, 12–20. DOI: https://doi.org/10.1016/j.apcatb.2013.11.037
- 111 A. L. A. Marinho, R. C. Rabelo-Neto, F. B. Noronha, L. V. Mattos, Appl. Catal., A 2016, 520, 53–64. DOI: https://doi.org/10.1016/j.apcata.2016.03.032
- 112 G. Słowik, M. Greluk, M. Rotko, A. Machocki, Appl. Catal., B 2018, 221, 490–509. DOI: https://doi.org/10.1016/j.apcatb.2017.09.052
- 113 R. Trane-Restrup, S. Dahl, A. D. Jensen, Int. J. Hydrogen Energy 2013, 38 (35), 15105–15118. DOI: https://doi.org/10.1016/j.ijhydene.2013.09.027
- 114 H. Ma, L. Zeng, H. Tian, D. Li, X. Wang, X. Li, J. Gong, Appl. Catal., B 2016, 181, 321–331. DOI: https://doi.org/10.1016/j.apcatb.2015.08.019
- 115 C. Melchor-Hernández, A. Gómez-Cortés, G. Díaz, Fuel 2013, 107, 828–835. DOI: https://doi.org/10.1016/j.fuel.2013.01.047
- 116 J. Shao, G. Zeng, Y. Li, Int. J. Hydrogen Energy 2017, 42 (27), 17362–17375. DOI: https://doi.org/10.1016/j.ijhydene.2017.04.066
- 117 L. Li, D. Tang, Y. Song, B. Jiang, Q. Zhang, Energy 2018, 149, 937–943. DOI: https://doi.org/10.1016/j.energy.2018.02.116
- 118 K. Wang, B. Dou, B. Jiang, Y. Song, C. Zhang, Q. Zhang, H. Chen, Y. Xu, Int. J. Hydrogen Energy 2016, 41 (30), 12899–12909. DOI: https://doi.org/10.1016/j.ijhydene.2016.05.100
- 119 L. C. Chen, H. Cheng, C. W. Chiang, S. D. Lin, ChemSusChem 2015, 8 (10), 1787–1793. DOI: https://doi.org/10.1002/cssc.201403433
- 120 Z. Zheng, C. Sun, R. Dai, S. Wang, X. Wu, X. An, Z. Wu, X. Xie, Energy Fuels 2017, 31 (3), 3091–3100. DOI: https://doi.org/10.1021/acs.energyfuels.6b03016
- 121 D. Kim, B. S. Kwak, B.-K. Min, M. Kang, Appl. Surf. Sci. 2015, 332, 736–746. DOI: https://doi.org/10.1016/j.apsusc.2014.12.180
- 122 Z. Wang, C. Wang, S. Chen, Y. Liu, Int. J. Hydrogen Energy 2014, 39 (11), 5644–5652. DOI: https://doi.org/10.1016/j.ijhydene.2014.01.151
- 123 R.-C. Wu, C.-W. Tang, H.-H. Huang, C.-C. Wang, M.-B. Chang, C.-B. Wang, Int. J. Hydrogen Energy 2019, 44 (28), 14279–14289. DOI: https://doi.org/10.1016/j.ijhydene.2019.02.065
- 124 T. Wang, H. Ma, L. Zeng, D. Li, H. Tian, S. Xiao, J. Gong, Nanoscale 2016, 8 (19), 10177–10187. DOI: https://doi.org/10.1039/c6nr02586b
- 125 X. Zhao, G. Lu, Int. J. Hydrogen Energy 2016, 41 (5), 3349–3362. DOI: https://doi.org/10.1016/j.ijhydene.2015.09.063
- 126 W. Mulewa, M. Tahir, N. A. S. Amin, Chem. Eng. J. 2017, 326, 956–969. DOI: https://doi.org/10.1016/j.cej.2017.06.012
- 127 C. Pirez, W. Fang, M. Capron, S. Paul, H. Jobic, F. Dumeignil, L. Jalowiecki-Duhamel, Appl. Catal., A 2016, 518, 78–86. DOI: https://doi.org/10.1016/j.apcata.2015.10.035
- 128 J. F. Da Costa-Serra, R. Guil-López, A. Chica, Int. J. Hydrogen Energy 2010, 35 (13), 6709–6716. DOI: https://doi.org/10.1016/j.ijhydene.2010.04.013
- 129 C. Montero, A. Remiro, P. L. Benito, J. Bilbao, A. G. Gayubo, Fuel Process. Technol. 2018, 169, 207–216. DOI: https://doi.org/10.1016/j.fuproc.2017.10.003
- 130 T. Nejat, P. Jalalinezhad, F. Hormozi, Z. Bahrami, J. Taiwan Inst. Chem. Eng. 2019, 97, 216–226. DOI: https://doi.org/10.1016/j.jtice.2019.01.025
- 131 Z. Liu, S. D. Senanayake, J. A. Rodriguez, Appl. Catal., B 2016, 197, 184–197. DOI: https://doi.org/10.1016/j.apcatb.2016.03.013
- 132 A. C. Villagrán-Olivares, M. F. Gomez, M. N. Barroso, M. C. Abello, Mol. Catal. 2020, 481, 110164. DOI: https://doi.org/10.1016/j.mcat.2018.08.006
- 133 Y. Wang, C. Wang, M. Chen, Z. Tang, Z. Yang, J. Hu, H. Zhang, Fuel Process. Technol. 2019, 192, 227–238. DOI: https://doi.org/10.1016/j.fuproc.2019.04.031
- 134 F. Wang, L. Zhang, J. Deng, J. Zhang, B. Han, Y. Wang, Z. Li, H. Yu, W. Cai, Z. Deng, Fuel Process. Technol. 2019, 193, 94–101. DOI: https://doi.org/10.1016/j.fuproc.2019.05.004
- 135 Z. Xiao, Y. Li, F. Hou, C. Wu, L. Pan, J. Zou, L. Wang, X. Zhang, G. Liu, G. Li, Appl. Catal., B 2019, 258, 117940. DOI: https://doi.org/10.1016/j.apcatb.2019.117940
- 136 S. Sang, Z. J. Zhao, H. Tian, Z. Sun, H. Li, S. Assabumrungrat, T. Muhammad, L. Zeng, J. Gong, AIChE J., in press. DOI: https://doi.org/10.1002/aic.16877
- 137 A. T. F. Afolabi, C.-Z. Li, P. N. Kechagiopoulos, Int. J. Hydrogen Energy 2019, 44 (41), 22816–22830. DOI: https://doi.org/10.1016/j.ijhydene.2019.07.040
- 138
Z. Liu, S. D. Senanayake, J. A. Rodriguez, in Ethanol: Science and Engineering (Eds: A. Basile, A. Iulianelli, F. Dalena, T. N. Veziroğlu), Elsevier, Amsterdam
2019, 133–158.
10.1016/B978-0-12-811458-2.00005-5 Google Scholar
- 139 K. D. Punase, N. Rao, P. Vijay, Chem. Pap. 2019, 73 (5), 1027–1042. DOI: https://doi.org/10.1007/s11696-018-00678-6
- 140
P. D. Vaidya, Y.-J. Wu, A. E. Rodrigues, in Ethanol: Science and Engineering (Eds: A. Basile, A. Iulianelli, F. Dalena, T. N. Veziroğlu), Elsevier, Amsterdam
2019, 341–354.
10.1016/B978-0-12-811458-2.00013-4 Google Scholar
- 141 G. Garbarino, A. Lagazzo, P. Riani, G. Busca, Appl. Catal., B 2013, 129, 460–472. DOI: https://doi.org/10.1016/j.apcatb.2012.09.036
- 142 J. Ashok, S. Das, N. Dewangan, S. Kawi, Energy Convers. Manage. 2019, 1, 100003. DOI: https://doi.org/10.1016/j.ecmx.2019.100003
- 143 A. Remiro, A. Arandia, L. Oar-Arteta, J. Bilbao, A. G. Gayubo, Appl. Catal., B 2018, 237, 353–365. DOI: https://doi.org/10.1016/j.apcatb.2018.06.005
- 144 A. Simson, S. Crowley, M. J. Castaldi, Catal. Lett. 2016, 146 (8), 1361–1372. DOI: https://doi.org/10.1007/s10562-016-1749-y
- 145 Z. Haocui, X. Zhourong, Y. Mei, T. Yajie, L. Guozhu, Z. Xiangwen, L. Guozhu, Int. J. Hydrogen Energy 2020, 45 (7), 4284–4296. DOI: https://doi.org/10.1016/j.ijhydene.2019.12.049