Advanced Surface of Fibrous Activated Carbon Immobilized with FeO/TiO2 for Photocatalytic Evolution of Hydrogen under Visible Light
Corresponding Author
Ajit Sharma
Lovely Professional University, Chemical Engineering and Physical Science, Phagwara, Punjab, India
Correspondence: Ajit Sharma ([email protected]), Chemical Engineering and Physical Science, Lovely Professional University, Phagwara, Punjab, India; Nguyen Thi Thanh Truc ([email protected]), Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.Search for more papers by this authorDoan Van Thuan
Nguyen Tat Thanh University, NTT Hi-Tech Institute, 700000 Ho Chi Minh City, Vietnam
Search for more papers by this authorThanh-Dong Pham
VNU University of Science, Vietnam National University, Hanoi, Faculty of Chemistry, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
VNU University of Science, Vietnam National University, Hanoi, VNU Key Laboratory of Advanced Materials for Green Growth, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
Search for more papers by this authorMai Hung Thanh Tung
Ho Chi Minh City University of Food Industry, Faculty of Chemical Engineering, 140 Le Trong Tan, Ho Chi Minh City, Vietnam
Search for more papers by this authorCorresponding Author
Nguyen Thi Thanh Truc
Ton Duc Thang University, Faculty of Environment and Labour Safety, Ho Chi Minh City, Vietnam
Correspondence: Ajit Sharma ([email protected]), Chemical Engineering and Physical Science, Lovely Professional University, Phagwara, Punjab, India; Nguyen Thi Thanh Truc ([email protected]), Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.Search for more papers by this authorDai-Viet N. Vo
Nguyen Tat Thanh University, Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), 300A Nguyen Tat Thanh, District 4, 755414 Ho Chi Minh City, Vietnam
Search for more papers by this authorCorresponding Author
Ajit Sharma
Lovely Professional University, Chemical Engineering and Physical Science, Phagwara, Punjab, India
Correspondence: Ajit Sharma ([email protected]), Chemical Engineering and Physical Science, Lovely Professional University, Phagwara, Punjab, India; Nguyen Thi Thanh Truc ([email protected]), Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.Search for more papers by this authorDoan Van Thuan
Nguyen Tat Thanh University, NTT Hi-Tech Institute, 700000 Ho Chi Minh City, Vietnam
Search for more papers by this authorThanh-Dong Pham
VNU University of Science, Vietnam National University, Hanoi, Faculty of Chemistry, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
VNU University of Science, Vietnam National University, Hanoi, VNU Key Laboratory of Advanced Materials for Green Growth, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
Search for more papers by this authorMai Hung Thanh Tung
Ho Chi Minh City University of Food Industry, Faculty of Chemical Engineering, 140 Le Trong Tan, Ho Chi Minh City, Vietnam
Search for more papers by this authorCorresponding Author
Nguyen Thi Thanh Truc
Ton Duc Thang University, Faculty of Environment and Labour Safety, Ho Chi Minh City, Vietnam
Correspondence: Ajit Sharma ([email protected]), Chemical Engineering and Physical Science, Lovely Professional University, Phagwara, Punjab, India; Nguyen Thi Thanh Truc ([email protected]), Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.Search for more papers by this authorDai-Viet N. Vo
Nguyen Tat Thanh University, Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), 300A Nguyen Tat Thanh, District 4, 755414 Ho Chi Minh City, Vietnam
Search for more papers by this authorAbstract
FeO-doped TiO2 nanoparticle photocatalysts were immobilized onto the surface of fibrous activated carbon (ACF) via a sol-gel process. As an adsorbent and photocatalyst, FeO-TiO2 on immobilized ACFs (FeO-TiO2/ACF) greatly improved the photocatalysis rate of hydrogen production as compared with pure TiO2 and ACF-TiO2 under UV irradiation and visible light. The addition of ACFs surface significantly reduced the photogenerated pairs of electrons-hole recombination, thereby promoting the photocatalysis action of doped photo-metal oxides of FeO-TiO2. Co-doping of FeO onto the lattice of the TiO2 approach can improve the absorption activity of visible light through photo-metal oxide of TiO2 and further enhance hydrogen production under visible light. The photocatalytic fabrics (FeO-TiO2/ACF) were effortlessly split out from the experimental solution for re-utilization and exhibited high stability even after five complete regeneration cycles.
References
- 1 O. Schmidt, A. Gambhir, I. B. Staffell, A. Hawkes, J. Nelson, S. Few, Int. J. Hydrogen Energy 2017, 42, 30470–30492.
- 2 N. Fajrina, M. Tahir, Int. J. Hydrogen Energy 2019, 44 (2), 540–577.
- 3 R. Singh, S. Dutta, Fuel 2018, 220, 607–620.
- 4 W. Zhou, W. Li, J. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu, D. Zhao, J. Am. Chem. Soc. 2014, 136, 9280–9283.
- 5 D. I. Kondarides, V. M. Daskalaki, A. Patsoura, X. E. Verykios, Catal Lett. 2007, 122, 26–32.
- 6 M. Tahir, N. S. Amin, Energy Convers. Manage. 2013, 76, 194–214.
- 7 N. Chouhan, R. Ameta, R. K. Meena, N. Mandawat, R. Ghildiyal, Int. J. Hydrogen Energy 2016, 41, 2298–2306.
- 8 G. L. Chiarello, M. H. Aguirre, E. Selli, J. Catal. 2010, 273, 182–190.
- 9 V. Etacheri, D. Valentin, J. Schneider, D. Bahnemann, S. C. Pillai, J. Photochem. Photobiol., C 2015, 25, 1–29.
- 10 G. Colon, Appl. Catal., A 2016, 518, 48–59.
- 11 K. Maeda, J. Photochem. Photobiol., C 2011, 12, 237–268.
- 12 B. Tahir, M. Tahir, N. S. Amin, Appl. Surf. Sci. 2015, 338, 1–14.
- 13 N. Shi, X. Li, T. Fan, H. Zhou, D. Zhang, H. Zhu, Int. J. Hydrogen Energy 2014, 39, 5617–5624.
- 14 L. Clarizia, D. Spasiano, D. I. Somma, R. Marotta, R. Andreozzi, D. D. Dionysiou, Int. J. Hydrogen Energy 2014, 39, 16812–16831.
- 15 N. Shehzad, M. Tahir, K. Johari, T. Murugesan, M. A. Hussain, J. CO2 Util. 2018, 26, 98–122.
- 16 C. Marchal, A. Piquet, M. Behr, T. Cottineau, V. Papaefthimiou, V. Keller, J. Catal. 2017, 352, 22–34.
- 17 A. Sharma, B. K. Lee, J. Compos. Mater., in press. DOI: https://doi.org/10.1177/0021998316636464
- 18 J. Matos, C. Miranda, P. S. Poon, H. D. Mansilla, Sol. Energy 2016, 134, 64–71.
- 19 R. Saraswat, N. Talreja, D. Deva, N. Sankararamakrishnan, A. Sharma, N. Verma, Chem. Eng. J. 2012, 197, 250–260.
- 20 N. Talreja, D. Kumar, N. Verma, J. Water Process Eng. 2014, 3, 34–45.
- 21 P. Khare, J. Ramkumar, N. Verma, Chem. Eng. J. 2015, 276, 65–74.
- 22 M. Frites, S. U. M. Khan, Int. J. Hydrogen Energy 2019, 44, 10519–10527.
- 23 M. Tahir, Int. J. Hydrogen Energy 2019, 44, 3711–3725.
- 24 S. Singh, M. Ashfaq, R. K. Singh, H. C. Joshi, A. Srivastava, A. Sharma, N. Verma, New Biotechnol. 2013, 30, 656–665.
- 25 A. K. Sharma, B. K. Lee, Appl. Catal., A 2016, 523, 272–282.
- 26 A. K. Sharma, B. K. Lee, Catal. Today 2017, 287, 113–121.
- 27 S. Y. Ye, Y. C. Fang, X. L. Song, S. C. Luo, L. M. Ye, Chem. Eng. J. 2013, 225, 499–508.
- 28 Y. Houa, J. Qua, X. Zhao, P. Lei, D. Wan, C. P. Huang, Sci. Total Environ. 2009, 407, 2431–2439.
- 29 L. Liu, F. Chen, F. Yang, Sep. Purif. Technol. 2009, 70, 173–178.
- 30 G. Qiongzhi, F. Si, Z. Shengsen, F. Yueping, C. Xiaobo, Y. Siyuan, Int. J. Hydrogen Energy 2019, 44 (16), 8011–8019. DOI: https://doi.org/10.1016/j.ijhydene.2019.01.233
- 31 Y. Ma, H. Wang, J. Yu, W. Mo, H. Yuan, Int. J. Hydrogen Energy 2019, 44 (12), 5881–5889.
- 32 N. R. Khalid, E. Ahmed, M. Ahmad, N. A. Niaz, M. Ramzan, M. Shakil, Ceram. Int. 2016, 42, 18257–18263.
- 33 A. A. Melvin, K. Illath, T. Das, T. Raja, S. Bhattacharyya, C. S. Gopinath, Nanoscale 2015, 7, 13477–13488.
- 34 Z. H. N. Al-Azri, W. T. Chen, A. Chan, V. Jovic, T. Ina, H. Idriss, J. Catal. 2015, 329, 355–367.
- 35 W.-T. Chen, A. Chan, D. Sun-Waterhouse, T. Moriga, I. H. Waterhouse, J. Catal. 2015, 326, 43–53.
- 36 A. K. Sharma, B. K. Lee, Catal. Today 2017, 298, 158–167.
- 37 H. S. Kim, D. Kim, B. S. Kwak, G. B. Han, M. H. Um, M. Kang, Chem. Eng. J. 2014, 243, 272–279.
- 38 Y. Haldorai, A. Rengaraj, C. H. Kwak, Y. S. Huh, Y. K. Han, Synth. Met. 2014, 198, 10–18.
- 39 H. Zhao, M. Wu, J. Liu, Z. Deng, Y. Li, B. L. Su, Appl. Catal., B 2016, 184, 182–190.
- 40 Z. Ai, Y. Shao, B. Chang, B. Huang, Y. Wu, X. Hao, Appl. Catal., B 2019, 242, 202–208.
- 41 H. Y. Hafeez, S. K. Lakhera, S. Bellamkonda, G. R. Rao, M. V. Shankar, D. W. Bahnemann, Int. J. Hydrogen Energy 2018, 43, 3892–3904.
- 42 M. R. Karimi Estahbanati, N. Mahinpey, M. Feilizadeh, F. Attar, M. C. Iliuta, Int. J. Hydrogen Energy 2019, 44, 3203–3241.