Highly Accurate Prediction Method for Thermophysical Properties of Cryogenic Phase Change Materials
Jinwen Zhang
South China University of Technology, Key Lab of Heat Transfer Enhancement and Energy Conservation of the Ministry of Education, 381 Wushan Road, 510640 Guangzhou, China
Search for more papers by this authorCorresponding Author
Yajun Li
South China University of Technology, Key Lab of Heat Transfer Enhancement and Energy Conservation of the Ministry of Education, 381 Wushan Road, 510640 Guangzhou, China
Correspondence: Yajun Li ([email protected]), South China University of Technology, Key Lab of Heat Transfer Enhancement and Energy Conservation of the Ministry of Education, 381 Wushan Road, 510640 Guangzhou, China.Search for more papers by this authorJinwen Zhang
South China University of Technology, Key Lab of Heat Transfer Enhancement and Energy Conservation of the Ministry of Education, 381 Wushan Road, 510640 Guangzhou, China
Search for more papers by this authorCorresponding Author
Yajun Li
South China University of Technology, Key Lab of Heat Transfer Enhancement and Energy Conservation of the Ministry of Education, 381 Wushan Road, 510640 Guangzhou, China
Correspondence: Yajun Li ([email protected]), South China University of Technology, Key Lab of Heat Transfer Enhancement and Energy Conservation of the Ministry of Education, 381 Wushan Road, 510640 Guangzhou, China.Search for more papers by this authorAbstract
Considering the limitations of experimental studies on thermophysical properties of cryogenic phase change materials (PCMs), a highly accurate approach to predict the solid-liquid equilibrium (SLE) of PCMs is proposed, in which the method of referenced state by a hypothetic path is used in the fugacity of PCMs in the solid phase and the Soave-Redlich-Kwong (SRK)-UNIFAC model is applied in the liquid phase. Based on this method, the thermophysical properties of cryogenic composite PCMs including eutectic composition, eutectic temperature, and eutectic enthalpy are predicted with a minor deviation. Taking the liquid natural gas (LNG) air separation unit as an example, the established simulating method with high accuracy to predict the thermophysical properties of the PCMs is adopted for material selection and design for a cold storage unit in this project with high efficiency.
References
- 1 Y. Li, H. Luo, Chem. Eng. Res. Des. 2015, 93, 632–639. DOI: https://doi.org/10.1016/j.cherd.2014.04.009
- 2 Y. P. Zhang, K. P. Lin, R. Yang, H. F. Di, Y. Jiang, Energy Build. 2006, 38 (10), 1262–1269. DOI: https://doi.org/10.1016/j.enbuild.2006.02.009
- 3 F. Souayfane, F. Fardoun, P. H. Biwole, Energy Build. 2016, 129, 396–431. DOI: https://doi.org/10.1016/j.enbuild.2016.04.006
- 4 Y. Yamashita, Y. Hirata, Y. Iwata, K. Yamazaki, Y. Ito, Kagaku Kogaku Ronbunshu 2005, 31 (2), 151–158. DOI: https://doi.org/10.1252/kakoronbunshu.31.151
- 5 H. Tan, Y. Li, H. Tuo, M. Zhou, B. Tian, Energy 2010, 35 (5), 1927–1935. DOI: https://doi.org/10.1016/j.energy.2010.01.006
- 6 L. Zeng et al., 2011. CN102022876A
- 7 L. Zeng, D. Zhang, J. Xu, W. Liao, J. Shanghai Electr. Technol. 2010, 3 (3), 26–38. DOI: doi.org/CNKI:SUN:SHDQ.0.2010-03-009
- 8 C. Alkan, K. Kaya, A. Sarı, Mater. Lett. 2008, 62 (6–7), 1122–1125. DOI: https://doi.org/10.1016/j.matlet.2007.07.061
- 9 A. Sarı, A. Bicer, A. Karaipekli, Mater. Lett. 2009, 63 (13–14), 1213–1216. DOI: https://doi.org/10.1016/j.matlet.2009.02.045
- 10 E. Oróa, A. de Graciaa, A. Castella, M. M. Faridb, L. F. Cabeza, Appl. Energy 2012, 99 (6), 513–533. DOI: https://doi.org/10.1016/j.apenergy.2012.03.058
- 11 M. Delgado, A. Lázaro, J. Mazo, B. Zalba, Renewable Sustainable Energy Rev. 2012, 16 (1), 253–273. DOI: https://doi.org/10.1016/j.rser.2011.07.152
- 12 B. He, V. Martin, F. Setterwall, Fluid Phase Equilib. 2003, 212 (1), 97–109. DOI: https://doi.org/10.1016/S0378-3812(03)00270-X
- 13 M. Akgün, O. Aydın, K. Kaygusuz, Energy Convers. Manage. 2007, 48 (2), 669–678. DOI: https://doi.org/10.1016/j.enconman.2006.05.014
- 14 D. Zhang, S. Tian, D. Xiao, Sol. Energy 2007, 81 (5), 653–660. DOI: https://doi.org/10.1016/j.solener.2006.08.010
- 15 S. Harikrishnan, M. Deenadhayalan, S. Kalaiselvam, Energy Convers. Manage. 2014, 86 (5), 864–872. DOI: https://doi.org/10.1016/j.enconman.2014.06.042
- 16 M. M. Kenisarin, Sol. Energy 2014, 107 (9), 553–575. DOI: https://doi.org/10.1016/j.solener.2014.05.001
- 17 C. Peng, H. Liu, Y. Hu, Fluid Phase Equilib. 2001, 180 (1–2), 299–311. DOI: https://doi.org/10.1016/S0378-3812(01)00369-7
- 18 T. Hofman, B. Barbés, C. Casanova, Ber. Bunsen-Ges. Phys. Chem. 1998, 102 (1), 25–31. DOI: https://doi.org/10.1002/bbpc.19981020105
- 19 A. Saghafi, M. Moshfeghian, Fluid Phase Equilib. 2000, 169 (1), 31–47. DOI: https://doi.org/10.1016/S0378-3812(99)00343-X
- 20 O. Hernández-Garduza, F. Garcıa-Sánchez, E. Neau, M. Rogalski, Chem. Eng. J. 2000, 79 (2), 87–101. DOI: https://doi.org/10.1016/S1385-8947(00)00138-8
- 21 J. Chen, F. Kai, J. Gmehling, Fluid Phase Equilib. 2002, 200 (2), 411–429. DOI: https://doi.org/10.1016/S0378-3812(02)00048-1
- 22 P. Ma, Tutorial in Chemical Engineering Thermodynamics, 1st ed., Higher Education Press, Beijing 2011.
- 23Qingdao University of Science and Technology, Handbook on Physical Properties of Chemistry and Chemistry, 2nd ed., Chemical Industry Press, Beijing 2013.
- 24 R. Zhang, Phase Change Materials and Phase Change Energy Storage Technology, 1st ed., Science Press, Beijing 2009.
- 25 M. A. Castro, S. M. Clarke, A. Inaba, R. K. Thomas, T. Arnold, J. Phys. Chem. B 2001, 105 (36), 8577–8582. DOI: https://doi.org/10.1021/jp010873v
- 26 X. Yan, X. Lan, Chin. Chem. Lett. 2013, 24 (10), 885–888. DOI: https://doi.org/10.1016/j.cclet.2013.05.040
- 27 D. Mondieig, F. Rajabalee, V. Metivaud, H. A. J. Oonk, M. A. Cuevas-Diarte, Chem. Mater. 2004, 16 (5), 786–798. DOI: https://doi.org/10.1021/cm031169p
- 28 E. Marti, E. Kaisersberger, W. D. Emmerich, J. Therm. Anal. Calorim. 2004, 77 (3), 905–934. DOI: https://doi.org/10.1023/B:JTAN.0000041669.06816.36
- 29 M. Mehrpooya, M. M. M. Sharifzadeh, M. A. Rosen, Energy 2015, 90, 2047–2069. DOI: https://doi.org/10.1016/j.energy.2015.07.101
- 30 Y. Li, H. Luo, 2014. CN204063785U
- 31 Y. Li, F. Xu, M. Wen, 2017. CN106322817A