Biomass Gasification Integrated with Chemical Looping System for Hydrogen and Power. Coproduction Process – Thermodynamic and Techno-Economic Assessment
Peng Jiang
Khalifa University of Science and Technology, Department of Chemical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi, United Arab Emirates
Search for more papers by this authorCorresponding Author
Abdallah S. Berrouk
Khalifa University of Science and Technology, Department of Chemical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi, United Arab Emirates
Khalifa University of Science and Technology, Department of Mechanical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi, United Arab Emirates
Khalifa University of Science and Technology, Center for Catalysis and Separation, P.O. Box 127788, Abu Dhabi, United Arab Emirates
Correspondence: ([email protected]), Khalifa University of Science and Technology, Department of Chemical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi, United Arab Emirates.Search for more papers by this authorSatyadileep Dara
Khalifa University of Science and Technology, Department of Chemical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi, United Arab Emirates
Search for more papers by this authorPeng Jiang
Khalifa University of Science and Technology, Department of Chemical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi, United Arab Emirates
Search for more papers by this authorCorresponding Author
Abdallah S. Berrouk
Khalifa University of Science and Technology, Department of Chemical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi, United Arab Emirates
Khalifa University of Science and Technology, Department of Mechanical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi, United Arab Emirates
Khalifa University of Science and Technology, Center for Catalysis and Separation, P.O. Box 127788, Abu Dhabi, United Arab Emirates
Correspondence: ([email protected]), Khalifa University of Science and Technology, Department of Chemical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi, United Arab Emirates.Search for more papers by this authorSatyadileep Dara
Khalifa University of Science and Technology, Department of Chemical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi, United Arab Emirates
Search for more papers by this authorAbstract
Three biomass gasification-based hydrogen and power coproduction processes are modeled with Aspen Plus. Case 1 is the conventional biomass gasification coupled with a shift reactor, cases 2 and 3 involve integration of biomass gasification with iron-based and calcium-based chemical looping systems. The effects of important process parameters on the performance indicators such as hydrogen yield and efficiencies are evaluated by sensitivity analyses. These parameters include gasification temperature, molar ratios of steam to biomass in the gasifier, Fe2O3 to syngas in the fuel reactor, Fe/FeO to steam in the steam reactor, CaO to CO, and steam to CO in the carbonator. The energy and exergy balance distributions for the above three cases are comprehensively discussed and compared. Furthermore, techno-economic assessments are performed to evaluate the three cases in terms of capital cost, operating cost, and leveled cost of energy.
References
- 1 M. Touš, M. Pavlas, P. Stehlík, P. Popela, Energy 2011, 36 (8), 4654–4662. DOI: https://doi.org/10.1016/j.energy.2011.04.036
- 2 L. Yan, G. Yue, B. He, Energy 2015, 93, 1778–1787. DOI: https://doi.org/10.1016/j.energy.2015.10.042
- 3 L. Yan, B. He, X. Pei, C. Wang, Z. Duan, J. Song, X. Li, Int. J. Hydrogen Energy 2014, 39 (31), 17540–17553. DOI: https://doi.org/10.1016/j.ijhydene.2014.08.115
- 4 Y. Kalinci, A. Hepbasli, I. Dincer, Int. J. Hydrogen Energy 2009, 34 (21), 8799–8817. DOI: https://doi.org/10.1016/j.ijhydene.2009.08.078
- 5 R. Saidur, E. Abdelaziz, A. Demirbas, M. Hossain, S. Mekhilef, Renewable Sustainable Energy Rev. 2011, 15 (5), 2262–2289. DOI: https://doi.org/10.1016/j.rser.2011.02.015
- 6 M. Balat, M. Balat, E. Kırtay, H. Balat, Energy Convers. Manage. 2009, 50 (12), 3147–3157. DOI: https://doi.org/10.1016/j.enconman.2009.08.014
- 7 H. Balat, E. Kırtay, Int. J. Hydrogen Energy 2010, 35 (14), 7416–7426. DOI: https://doi.org/10.1016/j.ijhydene.2010.04.137
- 8 A. Susmozas, D. Iribarren, P. Zapp, J. Linβen, J. Dufour, Int. J. Hydrogen Energy 2016, 41–42, 19484–19491. DOI: https://doi.org/10.1016/j.ijhydene.2016.02.053
- 9 J. Ahrenfeldt, T. P. Thomsen, U. Henriksen, L. R. Clausen, Appl. Therm. Eng. 2013, 50 (2), 1407–1417. DOI: https://doi.org/10.1016/j.applthermaleng.2011.12.040
- 10 J. Ruiz, M. Juárez, M. Morales, P. Muñoz, M. Mendívil, Renewable Sustainable Energy Rev. 2013, 18, 174–183. DOI: https://doi.org/10.1016/j.rser.2012.10.021
- 11 P. Parthasarathy, K. S. Narayanan, Renewable Energy 2014, 66, 570–579. DOI: https://doi.org/10.1016/j.renene.2013.12.025
- 12 L.-S. Fan, Chemical Looping Systems for Fossil Energy Conversions, John Wiley & Sons, Hoboken, NJ 2011.
- 13 E. Gilliland, W. Lewis, US Patent , 1954. 2 665 971
- 14 S. Bhavsar, M. Najera, R. Solunke, G. Veser, Catal. Today 2014, 228, 96–105. DOI: https://doi.org/10.1016/j.cattod.2013.12.025
- 15 F. Li, L.-S. Fan, Energy Environ. Sci. 2008, 1 (2), 248–267. DOI: https://doi.org/10.1039/B809218B
- 16 M. Rydén, A. Lyngfelt, T. Mattisson, Fuel 2006, 85 (12), 1631–1641. DOI: https://doi.org/10.1016/j.fuel.2006.02.004
- 17 S. Ramkumar, M. V. Iyer, L.-S. Fan, Ind. Eng. Chem. Res. 2010, 50 (3), 1716–1729. DOI: https://doi.org/10.1021/ie100347p
- 18 C.-C. Cormos, Int. J. Hydrogen Energy 2012, 37 (18), 13371–13386. DOI: https://doi.org/10.1016/j.ijhydene.2012.06.090
- 19 P. Chiesa, G. Lozza, A. Malandrino, M. Romano, V. Piccolo, Int. J. Hydrogen Energy 2008, 33 (9), 2233–2245. DOI: https://doi.org/10.1016/j.ijhydene.2008.02.032
- 20 S. Mukherjee, P. Kumar, A. Hosseini, A. Yang, P. Fennell, Energy Fuels 2014, 28 (2), 1028–1040. DOI: https://doi.org/10.1021/ef4024299
- 21 L. Zhu, H. Chen, Z. Zhang, Energy Technol. 2016, 4 (10), 1274–1285. DOI: https://doi.org/10.1002/ente.201600011
- 22 J. Fan, H. Hong, L. Zhu, Appl. Energy 2017, 195, 861–876. DOI: https://doi.org/10.1016/j.apenergy.2017.03.093
- 23 B. Li, H. Yang, L. Wei, Int. J. Hydrogen Energy 2017, 42 (9), 5840–5848. DOI: https://doi.org/10.1016/j.ijhydene.2016.12.031
- 24 C. Liu, W. Wang, D. Chen, Energy Fuels 2018, 32 (9), 9541–9550. DOI: https://doi.org/10.1021/acs.energyfuels.8b01836
- 25 L. Abdelouahed, O. Authier, G. Mauviel, J.-P. Corriou, G. Verdier, A. Dufour, Energy Fuels 2012, 26 (6), 3840–3855. DOI: https://doi.org/10.1021/ef300411k
- 26 V. Wilk, H. Hofbauer, Fuel Process. Technol. 2016, 141, 138–147. DOI: https://doi.org/10.1016/j.fuproc.2015.07.035
- 27 L. Shen, Y. Gao, J. Xiao, Biomass Bioenergy 2008, 32 (2), 120–127. DOI: https://doi.org/10.1016/j.biombioe.2007.08.002
- 28 K. Wang, Q. Yu, Q. Qin, L. Hou, W. Duan, Int. J. Hydrogen Energy 2016, 41 (24), 10346–10353. DOI: https://doi.org/10.1016/j.ijhydene.2015.09.155
- 29 M. Asadullah, Renewable Sustainable Energy Rev. 2014, 40, 118–132. DOI: https://doi.org/10.1016/j.rser.2014.07.132
- 30 K. Svoboda, A. Siewiorek, D. Baxter, J. Rogut, M. Pohořelý, Energy Convers. Manage. 2008, 49 (2), 221–231. DOI: https://doi.org/10.1016/j.enconman.2007.06.036
- 31 D. Mei, A. Abad, H. Zhao, J. Adánez, C. Zheng, Energy Fuels 2014, 28 (11), 7043–7052. DOI: https://doi.org/10.1021/ef501981g
- 32 P. Moldenhauer, M. Rydén, A. Lyngfelt, Fuel 2012, 93, 351–363. DOI: https://doi.org/10.1016/j.fuel.2011.11.009
- 33 A. Tong, S. Bayham, M. V. Kathe, L. Zeng, S. Luo, L.-S. Fan, Appl. Energy 2014, 113, 1836–1845. DOI: https://doi.org/10.1016/j.apenergy.2013.05.024
- 34 M. H. Chang, C. M. Huang, W. H. Liu, W. C. Chen, J. Y. Cheng, W. Chen, T. W. Wen, S. Ouyang, C. H. Shen, H. W. Hsu, Chem. Eng. Technol. 2013, 36 (9), 1525–1532. DOI: https://doi.org/10.1002/ceat.201300081
- 35 L. Zhu, P. Jiang, J. Fan, Chem. Eng. Res. Des. 2015, 104, 110–124. DOI: https://doi.org/j.cherd.2015.07.027
- 36 M. Cohce, M. Rosen, I. Dincer, Int. J. Hydrogen Energy 2011, 36 (17), 11388–11398. DOI: https://doi.org/10.1016/j.ijhydene.2011.02.033
- 37 L. Zhu, Z. Zhang, J. Fan, P. Jiang, Comput. Chem. Eng. 2016, 84, 302–312. DOI: https://doi.org/j.compchemeng.2015.09.010
- 38 T. Ratlamwala, I. Dincer, Int. J. Hydrogen Energy 2015, 40 (24), 7568–7578. DOI: https://doi.org/10.1016/j.ijhydene.2014.10.123
- 39 R. S. El-Emam, I. Dincer, G. F. Naterer, Int. J. Hydrogen Energy 2012, 37 (2), 1689–1697. DOI: https://doi.org/j.ijhydene.2011.09.139
- 40 Y. Zhang, B. Li, H. Li, B. Zhang, Thermochim. Acta 2012, 538, 21–28. DOI: https://doi.org/10.1016/j.tca.2012.03.013
- 41 C.-C. Cormos, Int. J. Hydrogen Energy 2010, 35 (6), 2278–2289. DOI: https://doi.org/10.1016/j.ijhydene.2010.01.033
- 42 J. Fan, L. Zhu, P. Jiang, L. Li, H. Liu, J. Cleaner Prod. 2016, 131, 247–258. DOI: https://doi.org/j.jclepro.2016.05.040
- 43 C.-C. Cormos, Fuel Process. Technol. 2015, 137, 16–23. DOI: https://doi.org/10.1016/j.fuproc.2015.04.001
- 44
C. E. G. Padró, V. Putsche, Survey of the Economics of Hydrogen Technologies, National Renewable Energy Laboratory, Golden, CO, 1999.
10.2172/12212 Google Scholar
- 45 M. Cohce, I. Dincer, M. Rosen, Int. J. Hydrogen Energy 2010, 35 (10), 4970–4980. DOI: https://doi.org/10.1016/j.ijhydene.2009.08.066
- 46 Y. Du, Q. Yang, A. S. Berrouk, C. Yang, A. S. AlShoaibi, Energy Fuel 2014, 28 (11), 6830–6840. DOI: https://doi.org/10.1021/ef501667n
- 47 A. S. Berrouk, R. Ochieng, Fuel Process. Technol. 2014, 127, 20–25. DOI: https://doi.org/10.1016/j.fuproc.2014.06.012