Evaluation of Hydrodynamic Closures for Bubbly Regime CFD Simulations in Developing Pipe Flow
Mohsen Shiea
Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Search for more papers by this authorCorresponding Author
Antonio Buffo
Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Correspondence: Antonio Buffo ([email protected]), Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.Search for more papers by this authorEmilio Baglietto
Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 02139 Cambridge, MA, USA
Search for more papers by this authorDirk Lucas
Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstrasse 400, 01328 Dresden, Germany
Search for more papers by this authorMarco Vanni
Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Search for more papers by this authorDaniele Marchisio
Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Search for more papers by this authorMohsen Shiea
Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Search for more papers by this authorCorresponding Author
Antonio Buffo
Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Correspondence: Antonio Buffo ([email protected]), Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.Search for more papers by this authorEmilio Baglietto
Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 02139 Cambridge, MA, USA
Search for more papers by this authorDirk Lucas
Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstrasse 400, 01328 Dresden, Germany
Search for more papers by this authorMarco Vanni
Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Search for more papers by this authorDaniele Marchisio
Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Search for more papers by this authorAbstract
The effect of interfacial forces and relevant closures, particularly the lift and wall lubrication forces, on the predictions of Eulerian-Eulerian computational fluid dynamics simulations of bubbly flows was studied. The test case under study was a developing turbulent bubbly pipe flow, simulated by using OpenFOAM. The results show that the geometric approach to consider the wall effect leads to better agreement than a standard relation assuming asymmetric drainage around the bubble near the wall. Furthermore, the results verify the need for employing negative lift coefficients in cases with large bubbles. A sensitivity analysis on the lift coefficient highlighted the importance of investigating spatially developing flows to draw general conclusions on the applicability of closure relations.
Supporting Information
Filename | Description |
---|---|
ceat201900116-sup-0001-misc_information.pdf3.3 MB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 B. H. Hjertager, in Multiphase Reacting Flows: Modelling and Simulation (Eds: D. L. Marchisio, R. O. Fox), Springer, Vienna 2007, 125–179.
- 2 R. Rzehak, E. Krepper, Nucl. Eng. Des. 2013, 265, 701–711. DOI: https://doi.org/10.1016/j.nucengdes.2013.09.003
- 3 E. Krepper, D. Lucas, H.-M. Prasser, Nucl. Eng. Des. 2005, 235 (5), 597–611. DOI: https://doi.org/10.1016/j.nucengdes.2004.09.006
- 4 M. Politano, P. Carrica, J. Converti, Int. J. Multiphase Flow 2003, 29 (7), 1153–1182. DOI: https://doi.org/10.1016/S0301-9322(03)00065-X
- 5 A. Tomiyama, H. Tamai, I. Zun, S. Hosokawa, Chem. Eng. Sci. 2002, 57 (11), 1849–1858. DOI: https://doi.org/10.1016/S0009-2509(02)00085-4
- 6 R. M. Sugrue, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA 2017.
- 7 T. Frank, P. Zwart, E. Krepper, H.-M. Prasser, D. Lucas, Nucl. Eng. Des. 2008, 238 (3), 647–659. DOI: https://doi.org/10.1016/j.nucengdes.2007.02.056
- 8 S. Hosokawa, A. Tomiyama, S. Misaki, T. Hamada, in Proc. of the ASME 2002 Joint US-European Fluids Engineering Division Conference, ASME, Montreal, QC 2002, 855–860.
- 9
A. Tomiyama, A. Sou, I. Zun, N. Kanami, T. Sakaguchi, in Multiphase Flow 1995, (Eds: A. Serizawa, T. Fukano, J. Bataille), Elsevier, Amsterdam
1995, 3–15.
10.1016/B978-0-444-81811-9.50005-6 Google Scholar
- 10 S. Antal, R. Lahey Jr., J. Flaherty, Int. J. Multiphase Flow 1991, 17 (5), 635–652. DOI: https://doi.org/10.1016/0301-9322(91)90029-3
- 11 S. Tran-Cong, J.-L. Marié, R. J. Perkins, Int. J. Multiphase Flow 2008, 34 (8), 786–807. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2008.02.001
- 12 A. Zaruba, D. Lucas, H.-M. Prasser, T. Höhne, Chem. Eng. Sci. 2007, 62 (6), 1591–1605. DOI: https://doi.org/10.1016/j.ces.2006.11.044
- 13 K. Felton, E. Loth, Phys. Fluids 2001, 13 (9), 2564–2577. DOI: https://doi.org/10.1063/1.1388051
- 14 D. R. Shaver, M. Z. Podowski, in Proc. of the American Nuclear Society Winter Meeting, American Nuclear Society, La Grange Park, IL 2015, 1368–1371.
- 15 N. Lubchenko, B. Magolan, R. Sugrue, E. Baglietto, Int. J. Multiphase Flow 2018, 98, 36–44. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2017.09.003
- 16 R. Rzehak, E. Krepper, Nucl. Eng. Des. 2015, 287, 108–118. DOI: https://doi.org/10.1016/j.nucengdes.2015.03.005
- 17 M. Beyer, D. Lucas, J. Kussin, P. Schütz, Air-Water Experiments in a Vertical DN200-Pipe, Report FZD-505, 2008.
- 18 M. Ishii, T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, 2nd ed., Springer Science & Business Media, New York 2010.
- 19 D. A. Drew, Annu. Rev. Fluid Mech. 1983, 15 (1), 261–291. DOI: https://doi.org/10.1146/annurev.fl.15.010183.001401
- 20 H. Enwald, E. Peirano, A.-E. Almstedt, Int. J. Multiphase Flow 1996, 22, 21–66. DOI: https://doi.org/10.1016/S0301-9322(96)90004-X
- 21 A. Tomiyama, I. Kataoka, I. Zun, T. Sakaguchi, JSME Int. J., Ser. B 1998, 41 (2), 472–479. DOI: https://doi.org/10.1299/jsmeb.41.472
- 22 I. Ẑun, Int. J. Multiphase Flow 1980, 6 (6), 583–588. DOI: https://doi.org/10.1016/0301-9322(80)90053-1
- 23 R. Wellek, A. Agrawal, A. Skelland, AIChE J. 1966, 12 (5), 854–862. DOI: https://doi.org/doi.org/10.1002/aic.690120506
- 24 D. Lucas, A. Tomiyama, Int. J. Multiphase Flow 2011, 37 (9), 1178–1190. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2011.05.009
- 25 A. D. Burns, T. Frank, I. Hamill, J.-M. Shi, 5th Int. Conf. on Multiphase Flow, Yokohama, May 2004.
- 26
S. B. Pope, Turbulent Flows, Cambridge University Press, New York
2000.
10.1017/CBO9780511840531 Google Scholar
- 27 T. Theofanous, J. Sullivan, J. Fluid Mech. 1982, 116, 343–362. DOI: https://doi.org/10.1017/S0022112082000494
- 28 S. Wang, S. Lee, O. Jones Jr., R. Lahey Jr., Int. J. Multiphase Flow 1987, 13 (3), 327–343. DOI: https://doi.org/10.1017/S0022112082000494
- 29 M. Lance, J. Bataille, J. Fluid Mech. 1991, 222, 95–118. DOI: https://doi.org/10.1017/S0022112091001015
- 30 M. Shawkat, C. Ching, M. Shoukri, Int. J. Multiphase Flow 2007, 33 (3), 300–316. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2006.09.002
- 31 A. Troshko, Y. Hassan, Int. J. Multiphase Flow 2001, 27 (11), 1965–2000. DOI: https://doi.org/10.1016/S0301-9322(01)00043-X
- 32 R. Rzehak, E. Krepper, Nucl. Eng. Des. 2013, 258, 57–65. DOI: https://doi.org/10.1016/j.nucengdes.2013.02.008