Full-Loop Simulation of Gas-Solids Flow in a Pilot-Scale Circulating Fluidized Bed
Min Wang
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, Fuxue Road 18, 102249 Beijing, China
Search for more papers by this authorYingya Wu
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, Fuxue Road 18, 102249 Beijing, China
Search for more papers by this authorXiaogang Shi
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, Fuxue Road 18, 102249 Beijing, China
Search for more papers by this authorCorresponding Author
Xingying Lan
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, Fuxue Road 18, 102249 Beijing, China
Correspondence: Xingying Lan ([email protected]), China University of Petroleum, State Key Laboratory of Heavy Oil Processing, Fuxue Road 18, 102249 Beijing, China.Search for more papers by this authorChengxiu Wang
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, Fuxue Road 18, 102249 Beijing, China
Search for more papers by this authorJinsen Gao
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, Fuxue Road 18, 102249 Beijing, China
Search for more papers by this authorMin Wang
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, Fuxue Road 18, 102249 Beijing, China
Search for more papers by this authorYingya Wu
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, Fuxue Road 18, 102249 Beijing, China
Search for more papers by this authorXiaogang Shi
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, Fuxue Road 18, 102249 Beijing, China
Search for more papers by this authorCorresponding Author
Xingying Lan
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, Fuxue Road 18, 102249 Beijing, China
Correspondence: Xingying Lan ([email protected]), China University of Petroleum, State Key Laboratory of Heavy Oil Processing, Fuxue Road 18, 102249 Beijing, China.Search for more papers by this authorChengxiu Wang
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, Fuxue Road 18, 102249 Beijing, China
Search for more papers by this authorJinsen Gao
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, Fuxue Road 18, 102249 Beijing, China
Search for more papers by this authorAbstract
In order to study the system hydrodynamics in a circulating fluidized bed (CFB), a 3D full-loop simulation was conducted for a pilot-scale CFB. The Eulerian-Eulerian two-fluid model with the kinetic theory of granular theory helped to simulate the gas-solids flow in the CFB. The system hydrodynamics including pressure balance, vectors of gas and solids, distribution of solids holdup, and instantaneous circulating rates were obtained to get a comprehensive understanding of the system. It was predicted that the main driving force was the pressure drop of the storage tank. The storage height and valve opening were critical operating factors to control the riser operation. The effects of operating conditions including solids circulating rates and superficial gas velocity on the hydrodynamics were investigated to provide guidance for the stable operation of the CFB system.
Supporting Information
Filename | Description |
---|---|
ceat201800542-sup-0001-misc_information.pdf333.7 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 X. Lan, C. Xu, G. Wang, L. Wu, J. Gao, Chem. Eng. Sci. 2009, 64 (17), 3847–3858. DOI: https://doi.org/10.1016/j.ces.2009.05.019
- 2 B. Lu, W. Wang, J. Li, Chem. Eng. Sci. 2009, 64 (15), 3437–3447. DOI: https://doi.org/10.1016/j.ces.2009.04.024
- 3 T. Samruamphianskun, P. Piumsomboon, B. Chalermsinsuwan, Chem. Eng. J. 2012, 210 (4), 237–251. DOI: https://doi.org/10.1016/j.cej.2012.08.079
- 4 S. S. Rodrigues, A. Forret, F. Montjovet, M. Lance, T. Gauthier, Powder Technol. 2015, 283, 519–529. DOI: https://doi.org/10.1016/j.powtec.2015.05.020
- 5 B. A. Kashiwa, W. Yang, in Circulating Fluidized Bed Technology VII (Eds: J. R. Grace, J. Zhu, H. D. Lasa), Canadian Society for Chemical Engineering, Ottawa 2002, 27–39.
- 6 N. Zhang, B. Lu, W. Wang, J. Li, Particuology 2008, 6, 529–539. DOI: https://doi.org/10.1016/j.partic.2008.07.013
- 7 G. Liu, D. Sun, H. Lu, J. Bouillard, Y. Bai, S. Wang, Ind. Eng. Chem. Res. 2010, 49 (11), 5132–5140. DOI: https://doi.org/10.1021/ie901103t
- 8 X. Wang, J. Fan, J. Lei, J. Wang, S. Wang, X. Xiang, Y. Xiao, Appl. Therm. Eng. 2011, 31, 2254–2261. DOI: https://doi.org/10.1016/j.applthermaleng.2011.03.019
- 9 C. Geng, W. Zhong, Y. Shao, D. Chen, B. Jin, Powder Technol. 2015, 276, 144–155. DOI: https://doi.org/10.1016/j.powtec.2015.01.077
- 10 A. Nikolopoulos, N. Nikolopoulos, A. Charitos, P. Grammelis, E. Kakaras, A. R. Bidwe, G. Varela, Chem. Eng. Sci. 2013, 90, 137–150. DOI: https://doi.org/10.1016/j.ces.2012.12.007
- 11 Y. Guan, J. Chang, K. Zhang, B. Wang, Q. Sun, D. Wen, Powder Technol. 2016, 289 (4), 118–125. DOI: https://doi.org//10.1016/j.powtec.2015.11.043
- 12 N. Zhang, B. Lu, W. Wang, J. Li, Chem. Eng. J. 2010, 162 (2), 821–828. DOI: https://doi.org/10.1016/j.cej.2010.06.033
- 13 W. Shuai, L. Guodong, L. Huilin, C. Juhui, H. Yurong, W. Jiaxing, Fuel Process. Technol. 2011, 92 (3), 385–393. DOI: https://doi.org/10.1016/j.fuproc.2010.09.032
- 14 X. Wang, F. Jiang, J. Lei, J. Wang, S. Wang, X. Xu, Y. Xiao, Appl. Therm. Eng. 2011, 31 (14–15), 2254–2261. DOI: https://doi.org/10.1016/j.applthermaleng.2011.03.019
- 15 T. D. B. Nguyen, M. W. Seo, Y.-I. Lim, B.-H. Song, S.-D. Kim, Comput. Chem. Eng. 2012, 36, 48–56. DOI: https://doi.org/10.1016/j.compchemeng.2011.07.005
- 16 J.-F. Dietiker, T. Li, R. Garg, M. Shahnam, Powder Technol. 2013, 235, 696–705. DOI: https://doi.org/10.1016/j.powtec.2012.11.028
- 17 B. Lu, N. Zhang, W. Wang, J. Li, J. H. Chiu, S. G. Kang, AICHE J. 2013, 59 (4), 1108–1117. DOI: https://doi.org/10.1002/aic.13917
- 18 T. Li, J.-F. Dietiker, L. Shadle, Chem. Eng. Sci. 2014, 120, 10–21. DOI: https://doi.org/10.1016/j.ces.2014.08.041
- 19 C. Liu, M. Zhao, W. Wang, J. Li, Chem. Eng. Sci. 2015, 137, 646–655. DOI: https://doi.org/10.1016/j.ces.2015.07.006
- 20 Y. Guan, J. Chang, K. Zhang, B. Wang, Q. Sun, Powder Technol. 2014, 268, 316–328. DOI: https://doi.org/10.1016/j.powtec.2014.08.046
- 21 M. Su, H. Zhao, J. Ma, Energy Convers. Manage. 2015, 105, 1–12. DOI: https://doi.org/10.1016/j.enconman.2015.07.042
- 22 K. W. Chu, A. B. Yu, Powder Technol. 2008, 179 (3), 104–114. DOI: https://doi.org/10.1016/j.powtec.2007.06.017
- 23 K. Luo, F. Wu, S. Yang, M. Fang, J. Fan, Chem. Eng. Sci. 2015, 123, 22–38. DOI: https://doi.org/10.1016/j.ces.2014.10.039
- 24
K. Luo, S. Yang, J. Tan, J. Fan, Procedia Eng.
2015, 102, 1446–1455. DOI: https://doi.org/10.1016/j.proeng.2015.01.278
10.1016/j.proeng.2015.01.278 Google Scholar
- 25 L. Sun, K. Luo, J. Fan, Chem. Eng. Technol. 2017, 40 (9), 1544–1551. DOI: https://doi.org/10.1002/ceat.201600711
- 26 S. Wang, K. Luo, C. Hu, J. Fan, Chem. Eng. Sci. 2017, 172, 199–215. DOI: https://doi.org/10.1016/j.ces.2017.05.052
- 27 S. Wang, K. Luo, S. Yang, C. Hu, J. Fan, Chem. Eng. J. 2017, 313, 858–872. DOI: https://doi.org/10.1016/j.cej.2016.10.130
- 28 S. Wang, K. Luo, S. Yang, C. Hu, J. Fan, Appl. Therm. Eng. 2017, 111, 1523–1537. DOI: https://doi.org/10.1016/j.applthermaleng.2016.07.161
- 29 Y. Xu, J. Musser, T. Li, B. Gopalan, R. Panday, J. Tucker, G. Breault, M. A. Clarke, W. Rogers, Ind. Eng. Chem. Res. 2018, 57 (2), 740–750. DOI: https://doi.org/10.1021/acs.iecr.7b03817
- 30 Y. Jiang, G. Qiu, H. Wang, Chem. Eng. Sci. 2014, 109, 85–97. DOI: https://doi.org/10.1016/j.ces.2014.01.029
- 31 J. M. Parker, Powder Technol. 2014, 265, 47–53. DOI: https://doi.org/10.1016/j.powtec.2014.01.027
- 32 Q. Wang, H. Yang, P. Wang, J. Lu, Q. Liu, H. Zhang, L. Wei, M. Zhang, Powder Technol. 2014, 253, 814–821. DOI: https://doi.org/10.1016/j.powtec.2013.11.041
- 33 Q. Wang, H. Yang, P. Wang, J. Lu, Q. Liu, H. Zhang, L. Wei, M. Zhang, Powder Technol. 2014, 253, 822–828. DOI: https://doi.org/10.1016/j.powtec.2013.11.040
- 34 Q. Tu, H. Wang, Powder Technol. 2018, 323, 534–547. DOI: https://doi.org/10.1016/j.powtec.2017.09.045
- 35 D. Gidaspow, Continuum Kinetic Theory Description 1994, 95, 1–29. DOI: https://doi.org/10.1016/B978-0-08-051226-6.50026-1