Transient Simulation of Hollow-Fiber Membrane Filtration with Nonuniform Permeability Distribution
Liwei Zhuang
East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Meilong Road 130, 200237 Shanghai, China
Search for more papers by this authorYang Wang
East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Meilong Road 130, 200237 Shanghai, China
Search for more papers by this authorCorresponding Author
Zhen-Liang Xu
East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Meilong Road 130, 200237 Shanghai, China
Correspondence: Zhen-Liang Xu ([email protected]), East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Meilong Road 130, Shanghai 200237, China.Search for more papers by this authorGance Dai
East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Meilong Road 130, 200237 Shanghai, China
Search for more papers by this authorLiwei Zhuang
East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Meilong Road 130, 200237 Shanghai, China
Search for more papers by this authorYang Wang
East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Meilong Road 130, 200237 Shanghai, China
Search for more papers by this authorCorresponding Author
Zhen-Liang Xu
East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Meilong Road 130, 200237 Shanghai, China
Correspondence: Zhen-Liang Xu ([email protected]), East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Meilong Road 130, Shanghai 200237, China.Search for more papers by this authorGance Dai
East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Meilong Road 130, 200237 Shanghai, China
Search for more papers by this authorAbstract
Transient simulation of filtration in hollow-fiber membranes with nonuniform permeability distribution was conducted. The diversity of permeability distributions caused different initial flux and transmembrane pressure distributions. Manipulating the permeability distribution enables a hollow-fiber membrane to achieve its maximum volumetric flow rate. During solid-liquid separation, the inter-adjustment between flux and cake distributions improved their uniformities simultaneously. The reciprocal of the volumetric flow rate of the membranes all increased linearly with water production. Severely nonuniform permeability distribution caused low water production. The numerical results could be applicable to account for the non-ideal performance of industrial hollow-fiber membrane modules.
References
- 1 J. Hennessy, A. Livingston, R. Baker, Nat. Mater. 2017, 16, 280–282. DOI: https://doi.org/10.1038/nmat4861
- 2 X. Yang, R. Wang, A. G. Fane, C. Y. Tang, I. G. Wenten, Desalin. Water Treat. 2013, 51, 3604–3627. DOI: https://doi.org/10.1080/19443994.2012.751146
- 3 Y. Moussy, A. D. Snider, J. Fluids Eng. 2011, 133, 014501. DOI: https://doi.org/10.1115/1.4003183
- 4 L. Oxarango, P. Schmitz, M. Quintard, Chem. Eng. Sci. 2004, 59, 1039–1051. DOI: https://doi.org/10.1016/j.ces.2003.10.027
- 5 S. K. Karode, J. Membr. Sci. 2001, 191, 237–241. DOI: https://doi.org/10.1016/S0376-7388(01)00546-4
- 6 L. W. Zhuang, H. F. Guo, G. C. Dai, Z. L. Xu, J. Membr. Sci. 2017, 526, 73–93. DOI: https://doi.org/10.1016/j.memsci.2016.12.018
- 7 S. A. Sonalkar, P. Hao, G. G. Lipscomb, Ind. Eng. Chem. Res. 2010, 49, 12074–12083. DOI: https://doi.org/10.1021/ie100649q
- 8 B. Liu, G. G. Lipscomb, J. Jensvold, AIChE J. 2001, 47, 2206–2219. DOI: https://doi.org/10.1002/aic.690471008
- 9 J. Lemanski, G. G. Lipscomb, J. Membr. Sci. 2000, 167, 241–252. DOI: https://doi.org/10.1016/S0376-7388(99)00295-1
- 10 J. Lemanski, B. Liu, G. G. Lipscomb, J. Membr. Sci. 1999, 153, 33–43. DOI: https://doi.org/10.1016/S0376-7388(98)00245-2
- 11 R. Rautenbach, A. Struck, M. F. M. Roks, J. Membr. Sci. 1998, 150, 31–41. DOI: https://doi.org/10.1016/S0376-7388(98)00206-3
- 12 S. Elmore, G. G. Lipscomb, J. Membr. Sci. 1995, 98, 49–56. DOI: https://doi.org/10.1016/0376-7388(94)00174-W
- 13 Z. X. Li, L. Z. Zhang, Int. J. Heat Mass Transfer 2014, 74, 421–430. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.047
- 14 L. Z. Zhang, Z. X. Li, T. S. Zhong, L. X. Pei, J. Membr. Sci. 2013, 427, 1–9. DOI: https://doi.org/10.1016/j.memsci.2012.09.030
- 15 J. M. Zheng, Z. K. Xu, J. M. Li, S. Y. Wang, Y. Y. Xu, J. Membr. Sci. 2004, 236, 145–151. DOI: https://doi.org/10.1016/j.memsci.2004.02.016
- 16 Y. J. Wang, F. Chen, Y. Wang, G. S. Luo, Y. Y. Dai, J. Membr. Sci. 2003, 216, 81–93. DOI: https://doi.org/10.1016/S0376-7388(03)00048-6
- 17 J. M. Zheng, Y. Y. Xu, Z. K. Xu, J. Membr. Sci. 2003, 211, 263–269. DOI: https://doi.org/10.1016/S0376-7388(02)00426-X
- 18 W. L. Li, J. Liu, L. Q. He, J. J. Liu, S. J. Sun, Z. P. Huang, X. M. Liang, D. Y. Gao, W. P. Ding, J. Membr. Sci. 2016, 501, 123–133. DOI: https://doi.org/10.1016/j.memsci.2015.11.037
- 19 J. C. Kim, J. H. Kim, J. Sung, H. Kim, E. Kang, S. H. Lee, J. K. Kim, H. C. Kim, B. G. Min, C. Ronco, Blood Purif. 2009, 28, 260–267. DOI: https://doi.org/10.1159/000232934
- 20 A. Frank, G. G. Lipscomb, M. Dennis, J. Membr. Sci. 2000, 175, 239–251. DOI: https://doi.org/10.1016/S0376-7388(00)00421-X
- 21 X. H. Li, J. X. Li, J. Wang, H. Wang, B. Q. He, H. W. Zhang, W. S. Guo, H. H. Ngo, J. Membr. Sci. 2014, 453, 18–26. DOI: https://doi.org/10.1016/j.memsci.2013.10.052
- 22 X. H. Li, J. X. Li, J. Wang, H. Wang, C. Z. Cui, B. Q. He, H. W. Zhang, J. Membr. Sci. 2014, 451, 226–233. DOI: https://doi.org/10.1016/j.memsci.2013.09.060
- 23 X. H. Li, J. X. Li, J. Wang, H. Wang, B. Q. He, H. W. Zhang, J. Membr. Sci. 2013, 444, 394–401. DOI: https://doi.org/10.1016/j.memsci.2013.05.052
- 24 G. Keir, V. Jegatheesan, Rev. Environ. Sci. Bio/Technol. 2014, 13, 183–201. DOI: https://doi.org/10.1007/s11157-013-9327-x
- 25 G. A. Fimbres-Weihs, D. E. Wiley, Chem. Eng. Process. 2010, 49, 759–781. DOI: https://doi.org/10.1016/j.cep.2010.01.007
- 26 R. Ghidossi, D. Veyret, P. Moulin, Chem. Eng. Process. 2006, 45, 437–454. DOI: https://doi.org/10.1016/j.cep.2005.11.002
- 27 Y. Bessiere, D. F. Fletcher, P. Bacchin, J. Membr. Sci. 2008, 313, 52–59. DOI: https://doi.org/10.1016/j.memsci.2007.12.064
- 28 B. Marcos, C. Moresoli, J. Skorepova, B. Vaughan, J. Membr. Sci. 2009, 337, 136–144. DOI: https://doi.org/10.1016/j.memsci.2009.03.036
- 29 J. Günther, P. Schmitz, C. Albasi, C. Lafforgue, J. Membr. Sci. 2010, 348, 277–286. DOI: https://doi.org/10.1016/j.memsci.2009.11.011
- 30 J. Günther, D. Hobbs, C. Albasi, C. Lafforgue, A. Cockx, P. Schmitz, J. Membr. Sci. 2012, 389, 126–136. DOI: https://doi.org/10.1016/j.memsci.2011.10.055
- 31 J. Happel, AIChE J. 1959, 5, 174–177. DOI: https://doi.org/10.1002/aic.690050211
- 32 S. Buetehorn, D. Volmering, K. Vossenkaul, T. Wintgens, M. Wessling, T. Melin, J. Membr. Sci. 2011, 384, 184–197. DOI: https://doi.org/10.1016/j.memsci.2011.09.022
- 33 R. Kaya, G. Deveci, T. Turken, R. Sengur, S. Guclu, D. Y. Koseoglu-Imer, I. Koyuncu, Desalination 2014, 351, 109–119. DOI: https://doi.org/10.1016/j.desal.2014.07.033
- 34 L. W. Zhuang, H. F. Guo, P. H. Wang, G. C. Dai, J. Membr. Sci. 2015, 495, 372–383. DOI: https://doi.org/10.1016/j.memsci.2015.07.060
- 35 P. J. Roache, P. M. Knupp, Commun. Numer. Methods Eng. 1993, 9, 365–374. DOI: https://doi.org/10.1002/cnm.1640090502
- 36 B. Tansel, W. Y. Bao, I. N. Tansel, Desalination 2000, 129, 7–14. DOI: https://doi.org/10.1016/S0011-9164(00)00046-1
- 37 C. Serra, M. J. Clifton, P. Moulin, J. Rouch, P. Aptel, J. Membr. Sci. 1998, 145, 159–172. DOI: https://doi.org/10.1016/S0376-7388(98)00075-1
- 38 P. Bacchin, P. Aimar, V. Sanchez, AIChE J. 1995, 41, 368–376. DOI: https://doi.org/10.1002/aic.690410218
- 39 C. Ho, A. L. Zydney, J. Colloid Interface Sci. 2000, 232, 389–399. DOI: https://doi.org/10.1006/jcis.2000.7231
- 40 S. Mondal, S. De, J. Membr. Sci. 2009, 344, 6–13. DOI: https://doi.org/10.1016/j.memsci.2009.08.015
- 41 C. Tien, B. V. Ramarao, J. Membr. Sci. 2011, 383, 17–25. DOI: https://doi.org/10.1016/j.memsci.2011.07.019
- 42 L. W. Zhuang, G. C. Dai, CIESC J. 2016, 67, 2841–2850. DOI: https://doi.org/10.11949/j.issn.0438-1157.20160088
- 43 J. Wang, Chem. Eng. J. 2011, 168, 1331–1345. DOI: https://doi.org/10.1016/j.cej.2011.02.050
- 44 Y. Bessiere, N. Abidine, P. Bacchin, J. Membr. Sci. 2005, 264, 37–47. DOI: https://doi.org/10.1016/j.memsci.2005.04.018
- 45 Y. Bessiere, P. Bacchin, B. Jefferson, Desalination 2005, 175, 29–36. DOI: https://doi.org/10.1016/j.desal.2004.09.021
- 46 P. Harmant, P. Aimar, AIChE J. 1996, 42, 3523–3532. DOI: https://doi.org/10.1002/aic.690421221
- 47 M. Lee, J. Kim, Sep. Purif. Technol. 2012, 95, 227–234. DOI: https://doi.org/10.1016/j.seppur.2012.04.017
- 48 S. Chang, A. G. Fane, T. D. Waite, J. Membr. Sci. 2006, 268, 132–141. DOI: https://doi.org/10.1016/j.memsci.2005.06.010
- 49 J. Murkes, C. Carlsson, Crossflow Filtration: Theory and Practice, John Wiley & Sons, Chichester 1988.