Interfacial Friction Factor Prediction in Vertical Annular Flow Based on the Interface Roughness
Baojiang Sun
China University of Petroleum (East China), School of Petroleum Engineering, 66 Changjiang West Road, 266580 Qingdao, China
China University of Petroleum (East China), National Engineering Laboratory for Testing and Detection Technology of Subsea Equipments, 66 Changjiang West Road, 266580 Qingdao, China
Search for more papers by this authorZhennan Zhang
China University of Petroleum (East China), School of Petroleum Engineering, 66 Changjiang West Road, 266580 Qingdao, China
Search for more papers by this authorCorresponding Author
Zhiyuan Wang
China University of Petroleum (East China), School of Petroleum Engineering, 66 Changjiang West Road, 266580 Qingdao, China
Correspondence: Zhiyuan Wang ([email protected]), China University of Petroleum (East China), School of Petroleum Engineering,66 Changjiang West Road, Qingdao 266580, China.Search for more papers by this authorHua Xiang
Gubkin Russian State University of Oil and Gas (National Research University), Faculty of Oil and Gas Field Development, 65 Leninsky Prospect, 119991 Moscow, Russia
Search for more papers by this authorBaojiang Sun
China University of Petroleum (East China), School of Petroleum Engineering, 66 Changjiang West Road, 266580 Qingdao, China
China University of Petroleum (East China), National Engineering Laboratory for Testing and Detection Technology of Subsea Equipments, 66 Changjiang West Road, 266580 Qingdao, China
Search for more papers by this authorZhennan Zhang
China University of Petroleum (East China), School of Petroleum Engineering, 66 Changjiang West Road, 266580 Qingdao, China
Search for more papers by this authorCorresponding Author
Zhiyuan Wang
China University of Petroleum (East China), School of Petroleum Engineering, 66 Changjiang West Road, 266580 Qingdao, China
Correspondence: Zhiyuan Wang ([email protected]), China University of Petroleum (East China), School of Petroleum Engineering,66 Changjiang West Road, Qingdao 266580, China.Search for more papers by this authorHua Xiang
Gubkin Russian State University of Oil and Gas (National Research University), Faculty of Oil and Gas Field Development, 65 Leninsky Prospect, 119991 Moscow, Russia
Search for more papers by this authorAbstract
Correlations for the interface roughness are proposed for conditions without or with disturbance waves for vertical annular flow. The decisive role of interface roughness in the interfacial friction factor is specified through a comparison of ten correlations for the interfacial friction factor with an experimental database. The effect of the disturbance wave on the interface roughness is analyzed to figure out the influence parameters, which are the superficial gas and liquid Reynolds numbers for conditions without disturbance waves and gas core and liquid film Reynolds numbers for conditions with disturbance waves. The proposed correlations improve the prediction precision of the interfacial friction factor, especially in smooth and transitional regimes.
References
- 1 E. Pagan, W. C. Williams, S. Kam, P. J. Waltrich, Chem. Eng. Sci. 2017, 162, 309–321. DOI: https://doi.org/10.1016/j.ces.2016.12.059
- 2 B. N. Kishore, S. Jayanti, Chem. Eng. Sci. 2004, 59 (17), 3577–3589. DOI: https://doi.org/10.1016/j.ces.2004.06.003
- 3 V. M. Alipchenkov, R. I. Nigmatulin, S. L. Soloviev, O. G. Stonik, L. I. Zaichik, Y. A. Zeigarnik, Int. J. Heat Mass Transfer 2004, 47 (24), 5323–5338. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.011
- 4 Y. Y. Xu, S. Paschke, J. U. Repke, J. Q. Yuan, G. Wozny, Chem. Eng. Technol. 2009, 32 (8), 1227–1235. DOI: https://doi.org/10.1002/ceat.200900099
- 5 R. Kumar, D. P. Edwards, Interfacial Shear Modeling in Two-Phase Annular Flow, 1996 Int. Mechanical Engineering Congr. and Exhibition, Atlanta, GA, November 1996.
- 6 J. Jimenez, Annu. Rev. Fluid Mech. 2004, 36, 173–196. DOI: https://doi.org/10.1146/annurev.fluid.36.050802.122103
- 7 R. J. Belt, J. M. C. Van't Westende, H. M. Prasser, L. M. Portela, Int. J. Multiphase Flow 2010, 36 (7), 570–587. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2010.03.004
- 8 N. S. Hall Taylor, I. J. Hewitt, J. R. Ockendon, T. P. Witelski, Int. J. Multiphase Flow 2014, 66, 38–45. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2014.06.004
- 9 Z. Wang, K. S. Gabriel, D. L. Manz, Int. J. Multiphase Flow 2004, 30 (10), 1193–1211. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2004.06.003
- 10 L. M. Pan, H. He, P. Ju, T. Hibiki, M. Ishii, Int. J. Heat Mass Transfer 2015, 89, 1172–1183. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.022
- 11 L. E. Gill, G. F. Hewitt, P. M. C. Lacey, Chem. Eng. Sci. 1964, 19 (9), 665–682. DOI: https://doi.org/10.1016/0009-2509(64)85054-5
- 12 C. Shearer, R. Nedderman, Chem. Eng. Sci. 1965, 20 (7), 671–683.
- 13 G. B. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill, New York 1969.
- 14 R. J. Belt, J. M. C. Van't Westende, L. M. Portela, Int. J. Multiphase Flow 2009, 35 (7), 689–697. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2008.12.003
- 15 J. C. Asali, Ph.D. Thesis, University of Illinois at Urbana Champaign 1984.
- 16 L. B. Fore, A. E. Dukler, AIChE J. 1995, 41 (9), 2040–2046. DOI: https://doi.org/10.1002/aic.690410904
- 17 D. Schubring, Ph.D. Thesis, University of Wisconsin, Madison, WI 2009.
- 18 A. C. Ashwood, Ph.D. Thesis, University of Wisconsin, Madison, WI 2010.
- 19 R. Kaji, B. J. Azzopardi, Int. J. Multiphase Flow 2010, 36 (4), 303–313. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2009.11.010
- 20 L. B. Fore, S. G. Beus, R. C. Bauer, Int. J. Multiphase Flow 2000, 26 (11), 1755–1769. DOI: https://doi.org/10.1016/S0301-9322(99)00114-7
- 21 C. Berna, A. Escrivá, J. L. Muñoz-Cobo, L. E. Herranz, Prog. Nucl. Energy 2014, 74, 14–43. DOI: https://doi.org/10.1016/j.pnucene.2014.01.018
- 22 I. Kataoka, M. Ishii, A. Nakayama, Int. J. Heat Mass Transfer 2000, 43 (9), 1573–1589. DOI: https://doi.org/10.1016/S0017-9310(99)00236-7
- 23 M. Ishii, K. Mishima, Int. J. Heat Mass Transfer 1989, 32 (10), 1835–1846. DOI: https://doi.org/10.1016/0017-9310(89)90155-5
- 24 S. E. Haaland, J. Fluids Eng. 1983, 105 (1), 89–90. DOI: https://doi.org/10.1115/1.3240948
- 25 H. Schlichting, K. Gersten, Boundary Layer Theory, 4th ed., McGraw-Hill, New York 1960.
- 26 D. Hartley, D. Roberts, A Correlation of Pressure Drop Data for Two-Phase Annular Flows in Vertical Channels, Nuclear Research Memorandum Q.6, University of London, London 1961.
- 27 W. H. Henstock, T. J. Hanratty, AIChE J. 1976, 22 (6), 990–1000. DOI: https://doi.org/10.1002/aic.690220607
- 28 J. C. Asali, T. J. Hanratty, P. Andreussi, AIChE J. 1985, 31 (6), 895–902. DOI: https://doi.org/10.1002/aic.690310604
- 29 W. Ambrosini, P. Andreussi, B. J. Azzopardi, Int. J. Multiphase Flow 1991, 17 (4), 497–507. DOI: https://doi.org/10.1016/0301-9322(91)90045-5
- 30 A. J. Holt, B. J. Azzopardi, M. W. Biddulph, Chem. Eng. Res. Des. 1999, 77 (1), 7–15. DOI: https://doi.org/10.1205/026387699525828
- 31 S. Wongwises, W. Kongkiatwanitch, Int. Commun. Heat Mass Transfer 2001, 28 (3), 323–336. DOI: https://doi.org/10.1016/S0735-1933(01)00238-X
- 32 B. Azzopardi, J. Teixeira, J. Fluids Eng. 1994, 116 (4), 796–800. DOI: https://doi.org/10.1115/1.2911852
- 33 B. J. Azzopardi, Nucl. Eng. Des. 1986, 92 (2), 121–133. DOI: https://doi.org/10.1016/0029-5493(86)90240-2
- 34 H. Han, Z. Zhu, K. Gabriel, Nucl. Eng. Des. 2006, 236 (24), 2580–2588. DOI: https://doi.org/10.1016/j.nucengdes.2006.03.015
- 35 T. Hazuku, T. Takamasa, Y. Matsumoto, Int. J. Multiphase Flow 2008, 34 (2), 111–127. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2007.10.008
- 36 G. F. Hewitt, N. S. H. Taylor, Annular Two-Phase Flow, Elsevier, Oxford 1970.
- 37 M. Ishii, M. A. Grolmes, AIChE J. 1975, 21 (2), 308–318. DOI: https://doi.org/10.1002/aic.690210212
- 38 A. Dasgupta, D. K. Chandraker, S. Kshirasagar, B. R. Reddy, R. Rajalakshmi, A. K. Nayak, S. P. Walker, P. K. Vijayan, G. F. Hewitt, Exp. Therm. Fluid Sci. 2017, 81, 147–163. DOI: https://doi.org/10.1016/j.expthermflusci.2016.10.012
- 39 P. Sawant, M. Ishii, M. Mori, Nucl. Eng. Des. 2008, 238 (6), 1342–1352. DOI: https://doi.org/10.1016/j.nucengdes.2007.10.005
- 40 I. Kataoka, M. Ishii, K. Mishima, J. Fluids Eng. 1983, 105 (2), 230–238. DOI: https://doi.org/10.1115/1.3240969
- 41 R. Kumar, M. Gottmann, K. Sridhar, J. Fluids Eng. 2002, 124 (3), 634–642. DOI: https://doi.org/10.1115/1.1493808
- 42 M. B. Alamu, B. J. Azzopardi, Nucl. Eng. Des. 2011, 241 (12), 5079–5092. DOI: https://doi.org/10.1016/j.nucengdes.2011.08.015