Removal of NO from Flue Gas by a Heterogeneous Fenton-Like Process
Corresponding Author
Yi Zhao
North China Electric Power University, School of Environmental Science and Engineering, No. 2, Beinong Road, 102206 Beijing, China
Correspondence: Yi Zhao ([email protected]), North China Electric Power University, School of Environmental Science and Engineering, No. 2, Beinong Road, 102206 Beijing, China.Search for more papers by this authorYuhong Han
North China Electric Power University, School of Environmental Science and Engineering, No. 2, Beinong Road, 102206 Beijing, China
Hebei University, College of Physics Science and Technology, No. 180, Wusi East Road, 071002 Baoding, China
Search for more papers by this authorZheng Zhao
Hebei Environmental Monitoring Center, No. 30, Yaqing Street, 050000 Shijiazhuang, China
Search for more papers by this authorCorresponding Author
Yi Zhao
North China Electric Power University, School of Environmental Science and Engineering, No. 2, Beinong Road, 102206 Beijing, China
Correspondence: Yi Zhao ([email protected]), North China Electric Power University, School of Environmental Science and Engineering, No. 2, Beinong Road, 102206 Beijing, China.Search for more papers by this authorYuhong Han
North China Electric Power University, School of Environmental Science and Engineering, No. 2, Beinong Road, 102206 Beijing, China
Hebei University, College of Physics Science and Technology, No. 180, Wusi East Road, 071002 Baoding, China
Search for more papers by this authorZheng Zhao
Hebei Environmental Monitoring Center, No. 30, Yaqing Street, 050000 Shijiazhuang, China
Search for more papers by this authorAbstract
An iron-containing polyoxometalates (POMs) complex (FeIIIAspPW) was synthesized from ferric chloride, aspartic acid, and phosphotungstic acid for developing a novel method based on a Fenton-like process using Fe-containing POMs as heterogeneous catalyst to remove NO from flue gas. The effects of various experimental parameters on NO removal efficiency were evaluated in a self-made bubbling reactor. Under optimized conditions, an average removal efficiency of > 90 % was obtained. The dominant reactive species generated in the system was suggested to be •OH by adding the •OH quenching agent of tert-butanol and the main reaction product was identified as nitrate. A possible catalytic mechanism was proposed on the basis of experimental results and references. The catalysis might result from the redox cycles of ≡FeIII↔≡FeII and ≡POM↔≡POM− on the surface of FeIIIAspPW, and the high catalytic activity of FeIIIAspPW might be attributed to the chemisorption of H2O2 on its surface by hydrogen bonding.
References
- 1 J. K. Xie, Z. Qu, N. Q. Yan, S. J. Yang, W. M. Chen, L. G. Hu, W. J. Huang, P. Liu, J. Hazard. Mater. 2013, 261, 206–213. DOI: https://doi.org/10.1016/j.jhazmat.2013.07.027
- 2 Z. Y. Fan, J. W. Shi, C. Gao, G. Gao, B. R. Wang, Chem. Eng. J. 2018, 348, 820–830. DOI: https://doi.org/10.1016/j.cej.2018.05.038
- 3 Z. H. Wang, J. H. Zhou, Y. Q. Zhu, Z. C. Wen, J. Z. Liu, K. F. Cen, Fuel Process. Technol. 2007, 88 (8), 817–823. DOI: https://doi.org/10.1016/j.fuproc.2007.04.001
- 4 Y. Zhao, Y. H. Han, T. Z. Ma, T. X. Guo, Environ. Sci. Technol. 2011, 45 (9), 4060–4065. DOI: https://doi.org/10.1021/es103857g
- 5 Y. Zhao, Y. H. Han, T. X. Guo, T. Z. Ma, Energy 2014, 67, 652–658. DOI: https://doi.org/10.1016/j.energy.2014.01.081
- 6 Y. Zhao, R. L. Hao, M. Qi, Chem. Eng. J. 2015, 269, 159–167. DOI: https://doi.org/10.1016/j.cej.2015.01.064
- 7 Y. Zhao, R. L. Hao, B. Yuan, J. J. Jiang, J. Hazard. Mater. 2016, 301, 74–83. DOI: https://doi.org/10.1016/j.jhazmat.2015.08.049
- 8 Y. Zhao, R. L. Hao, F. M. Xue, Y. N. Feng, J. Hazard. Mater. 2017, 321, 500–508. DOI: https://doi.org/10.1016/j.jhazmat.2016.09.044
- 9 L. J. Xu, J. L. Wang, J. Hazard. Mater. 2011, 186 (1), 256–264. DOI: https://doi.org/10.1016/j.jhazmat.2010.10.116
- 10 L. Wang, J. Yang, Y. M. Li, J. Lv, J. T. Zou, Chem. Eng. J. 2016, 284, 1058–1067. DOI: https://doi.org/10.1016/j.cej.2015.09.042
- 11 F. X. Chen, S. L. Xie, X. L. Huang, X. H. Qiu, J. Hazard. Mater. 2017, 322, 152–162. DOI: https://doi.org/10.1016/j.jhazmat.2016.02.073
- 12 J. M. Zheng, Z. Q. Gao, H. He, S. G. Yang, C. Sun, Chemosphere 2016, 150, 40–48. DOI: https://doi.org/10.1016/j.chemosphere.2016.02.001
- 13 Y. C. Liu, G. M. Zhang, S. Chong, N. Zhang, H. Z. Chang, T. Huang, S. Y. Fang, J. Environ. Manage. 2017, 192, 150–155. DOI: https://doi.org/10.1016/j.jenvman.2017.01.064
- 14 S. H. Tian, Y. T. Tu, D. S. Chen, X. Chen, Y. Xiong, Chem. Eng. J. 2011, 169, 31–37. DOI: https://doi.org/10.1016/j.cej.2011.02.045
- 15 R. C. C. Costa, M. F. F. Lelis, L. C. A. Oliveira, J. D. Fabris, J. D. Ardisson, R. R. V. A. Rios, C. N. Silva, R. M. Lago, J. Hazard. Mater. 2006, 129, 171–178. DOI: https://doi.org/10.1016/j.jhazmat.2005.08.028
- 16 C. Lee, C. R. Keenan, D. L. Sedlak, Environ. Sci. Technol. 2008, 42 (13), 4921–4926. DOI: https://doi.org/10.1021/es800317j
- 17 P. X. Lei, C. C. Chen, J. Yang, W. H. Ma, J. C. Zhao, L. Zang, Environ. Sci. Technol. 2005, 39, 8466–8474. DOI: https://doi.org/10.1021/es050321g
- 18 C. Lee, D. L. Sedlak, J. Mol. Catal. A: Chem. 2009, 311, 1–6. DOI: https://doi.org/10.1016/j.molcata.2009.07.001
- 19 M. Taghdiri, N. Saadatjou, N. Zamani, R. Farrokhi, J. Hazard. Mater. 2013, 246–247, 206–212. DOI: https://doi.org/10.1016/j.jhazmat.2012.12.029
- 20 J. Lee, J. Kim, W. Choi, Environ. Sci. Technol. 2007, 41 (9), 3335–3340. DOI: https://doi.org/10.1021/es062430g
- 21 L. Z. Zhang, H. H. Zeng, Y. M. Zeng, A. H. Zhang, X. F. Zhao, J. Mol. Catal. A: Chem. 2014, 392, 202–207. DOI: https://doi.org/10.1016/j.molcata.2014.05.012
- 22 H. Chen, L. Z. Zhang, H. H. Zeng, D. J. Yin, Q. Zhai, X. F. Zhao, J. H. Li, J. Mol. Catal. A: Chem. 2015, 406, 72–77. DOI: https://doi.org/10.1016/j.molcata.2015.05.017
- 23 D. J. Yin, L. Z. Zhang, X. F. Zhao, H. Chen, Q. Zhai, Chin. J. Catal. 2015, 36 (12), 2203–2210. DOI: https://doi.org/10.1016/S1872-2067(15)61011-7
- 24 Q. Zhai, L. Z. Zhang, X. F. Zhao, H. Chen, D. J. Yin, J. H. Li, Appl. Surf. Sci. 2016, 377, 17–22. DOI: https://doi.org/10.1016/j.apcatb.2016.04.019
- 25 Y. H. Guo, C. W. Hu, J. Mol. Catal. A: Chem. 2007, 262 (1–2), 136–148. DOI: https://doi.org/10.1016/j.molcata.2006.08.039
- 26 Y. X. Liu, Y. Wang, Q. Wang, J. F. Pan, Y. C. Zhang, J. F. Zhou, J. Zhang, J. Hazard. Mater. 2015, 292, 164–172. DOI: https://doi.org/10.1016/j.jhazmat.2015.03.027
- 27 T. D. Nguyen, P. N. Hoa, M. H. Do, K. T. Ngo, J. Hazard. Mater. 2011, 185, 653–661. DOI: https://doi.org/10.1016/j.jhazmat.2010.09.068
- 28 L. J. Xu, J. L. Wang, Appl. Catal. B: Environ. 2012, 123–124, 117–126. DOI: https://doi.org/10.1016/j.apcatb.2012.04.028
- 29 Y. Zhao, R. L. Hao, Q. Guo, Y. N. Feng, Fuel Process. Technol. 2015, 137, 8–15. DOI: https://doi.org/10.1016/j.fuproc.2015.04.003
- 30 Y. X. Liu, J. F. Zhou, Y. C. Zhang, J. F. Pan, Q. Wang, J. Zhang, Fuel 2015, 145, 180–188. DOI: https://doi.org/10.1016/j.fuel.2014.12.084
- 31 A. Jürgensen, J. B. Moffat, Catal. Lett. 1995, 34 (1–2), 237–244. DOI: https://doi.org/10.1007/BF00808338
- 32 J. H. Kyle, J. Chem. Soc., Dalton Trans. 1983, 12, 2609–2612. DOI: https://doi.org/10.1039/DT9830002609
- 33 R. T. Guo, W. G. Pan, X. B. Zhang, J. X. Ren, Q. Jin, H. J. Xu, J. Wu, Fuel 2011, 90, 3295–3298. DOI: https://doi.org/10.1016/j.fuel.2011.06.030
- 34 C. S. Zhou, L. S. Sun, A. C. Zhang, C. Ma, B. Wang, J. Yu, S. Su, S. Hu, J. Xiang, Chem. Eng. J. 2015, 273, 381–389. DOI: https://doi.org/10.1016/j.cej.2015.03.105
- 35 F. M. Zhan, C. T. Li, G. M. Zeng, S. S. Tao, Y. J. Xiao, X. Zhang, L. K. Zhao, J. Zhang, J. F. Ma, Chem. Eng. J. 2013, 232, 81–88. DOI: https://doi.org/10.1016/j.cej.2013.07.082
- 36 Y. X. Liu, Q. Wang, Y. S. Yin, J. F. Pan, J. Zhang, Chem. Eng. Res. Des. 2014, 92, 1907–1914. DOI: https://doi.org/10.1016/j.cherd.2013.12.015
- 37 M. Misono, Catal. Rev. Sci. Eng. 1987, 29, 269–321. DOI: https://doi.org/10.1080/01614948708078072
- 38 N. Wang, L. H. Zhu, M. Lei, Y. B. She, M. J. Cao, H. Q. Tang, ACS Catal. 2011, 1 (10), 1193–1202. DOI: https://doi.org/10.1021/cs2002862