The Reaction Kinetics of Gaseous Alkali Capture by Kaolin in Syngas Atmosphere
Corresponding Author
Florian Kerscher
Technical University Munich, Institute for Energy Systems, Boltzmannstrasse 15, 85748 Garching, Germany
Correspondence: Florian Kerscher ([email protected]), Technical University Munich, Institute for Energy Systems, Boltzmannstrasse 15, 85748 Garching, Germany.Search for more papers by this authorMarkus Stetka
Technical University Munich, Institute for Energy Systems, Boltzmannstrasse 15, 85748 Garching, Germany
Search for more papers by this authorHartmut Spliethoff
Technical University Munich, Institute for Energy Systems, Boltzmannstrasse 15, 85748 Garching, Germany
ZAE Bayern, Walther-Meissner-Strasse 6, 85748 Garching, Germany
Search for more papers by this authorCorresponding Author
Florian Kerscher
Technical University Munich, Institute for Energy Systems, Boltzmannstrasse 15, 85748 Garching, Germany
Correspondence: Florian Kerscher ([email protected]), Technical University Munich, Institute for Energy Systems, Boltzmannstrasse 15, 85748 Garching, Germany.Search for more papers by this authorMarkus Stetka
Technical University Munich, Institute for Energy Systems, Boltzmannstrasse 15, 85748 Garching, Germany
Search for more papers by this authorHartmut Spliethoff
Technical University Munich, Institute for Energy Systems, Boltzmannstrasse 15, 85748 Garching, Germany
ZAE Bayern, Walther-Meissner-Strasse 6, 85748 Garching, Germany
Search for more papers by this authorAbstract
Alumosilicate minerals are suitable sorbents at high temperatures for removing alkalis in syngas. Thermogravimetric investigations of these sorbents usually focus on the reaction mechanisms. Herein, a crucible arrangement is described that allows evaporation of the alkali source and sorption of gaseous alkali components in one temperature zone. With this experimental setup, kinetic investigations of alkali sorption are possible in a conventional thermobalance. Experiments were performed with sodium chloride as the alkali source and kaolin as the getter material. The reaction rate increased with alkali concentration and showed an exponential dependence on temperature. Thus, the Arrhenius model approach and power law model were selected for mathematical description.
References
- 1 H. Oleschko, Freisetzung von Alkalien und Halogeniden bei der Kohleverbrennung, Ph.D. Thesis, RWTH Aachen University 2007.
- 2 U. Gottwald, P. Monkhouse, B. Bonn, Fuel 2001, 80 (13), 1893–1899. DOI: https://doi.org/10.1016/S0016-2361(01)00045-X
- 3 M. Müller, Freisetzung und Einbindung von Alkalimetallverbindungen in kohlebefeuerten Kombikraftwerken, Schriften des Forschungszentrums Jülich, Energy & Environment, Vol. 34, Forschungszentrum Jülich GmbH, Jülich 2009.
- 4 M. Bläsing, T. Melchior, M. Müller, Fuel Process. Technol. 2011, 92 (3), 511–516. DOI: https://doi.org/10.1016/j.fuproc.2010.11.005
- 5 M. Bläsing, M. Müller, Fuel 2011, 90 (6), 2326–2333. DOI: https://doi.org/10.1016/j.fuel.2011.02.013
- 6 J. Stringer, Annu. Rev. Mater. Sci. 1977, 7, 477–509. DOI: https://doi.org/10.1146/annurev.ms.07.080177.002401
- 7 T. Tzvetkoff, A. Girginov, J. Mater. Sci. 1995, 30 (22), 5561–5575. DOI: https://doi.org/10.1007/BF00356688
- 8 Y. Bourhis, C. S. John, Oxid. Met. 1975, 9 (6), 507–528. DOI: https://doi.org/10.1007/BF00603857
- 9 N. Eliaz, G. Shemesh, R. M. Latanision, Eng. Failure Anal. 2002, 9 (1), 31–43. DOI: https://doi.org/10.1016/S1350-6307(00)00035-2
- 10 H. Spliethoff, Power Generation from Solid Fuels, Springer, Heidelberg 2010.
- 11 N. A. Holt, Encyclopedia of Physical Science and Technology, Academic Press, San Diego 1989.
- 12 B. Dou, W. Shen, J. Gao, X. Sha, Fuel Process. Technol. 2003, 82 (1), 51–60. DOI: https://doi.org/10.1016/S0378-3820(03)00027-4
- 13 I. Escobar Munoz, Ph.D. Thesis, RWTH Aachen 2007.
- 14 K.-Q. Tran, K. Iisa, B.-M. Steenari, O. Lindqvist, Fuel 2005, 84 (2–3), 169–175. DOI: https://doi.org/10.1016/j.fuel.2004.08.019
- 15 S. Q. Turn, C. M. Kinoshita, D. M. Ishimura, T. T. Hiraki, J. Zhou, S. M. Masutani, Ind. Eng. Chem. Res. 2001, 40 (8), 1960–1967. DOI: https://doi.org/10.1021/ie000749i
- 16 A. Waindich, M. Müller, Fuel 2014, 116, 889–893. DOI: https://doi.org/10.1016/j.fuel.2013.03.008
- 17 W. A. Punjak, M. Uberoi, F. Shadman, AIChE J. 1989, 35 (7), 1186–1194. DOI: https://doi.org/10.1002/aic.690350714
- 18 D. Bachovchin, M. Alvin, E. Dezubay, R. Mulik, A Study of High Temperature Removal of Alkali in a Pressurized Gasification System, Technical Report, Westinghouse Electric Corporation, Research and Development Center, Pittsburgh, PA 1986.
- 19 L. Scandrett, R. Clift, J. Inst. Energy 1984, 57 (433), 391–397.
- 20 A. Singh, R. Clift, G. Reed, AIChE Symp. Ser. 1986, 340, 167–176.
- 21 P. Mulik, M. Alvin, D. Bachovchin, Simultaneous High Temperature Removal of Alkali and Particulates in a Pressurized Gasification System, Technical Report, Westinghouse Electric Corporation, Research and Development Center, Pittsburgh, PA 1983.
- 22 D. M. Ruthven, Principle of Adsorption and Adsorption Processes, Wiley, New York 1984.
- 23 W. Willenborg, Ph.D. Thesis, RWTH Aachen 2003.
- 24 I. Escobar, M. Müller, Energy Fuels 2007, 21 (2), 735–743. DOI: https://doi.org/10.1021/ef0605145
- 25 I. Escobar, H. Oleschko, K.-J. Wolf, M. Müller, Powder Technol. 2008, 180 (1–2), 51–56. DOI: https://doi.org/10.1016/j.powtec.2007.03.001
- 26 W. Willenborg, M. Müller, K. Hilpert, Energy Fuels 2006, 20 (6), 2593–2598. DOI: https://doi.org/10.1021/ef060305k
- 27 A. K. Varshneya, Fundamentals of Inorganic Glasses, Academic Press, San Diego 1994.
- 28 H. Cheng, Q. Liu, J. Yang, S. Ma, R. L. Frost, Thermochim. Acta 2012, 545, 1–13. DOI: https://doi.org/10.1016/j.tca.2012.04.005
- 29 D. Gysau, Füllstoffe, 3rd ed., Vincentz Network, Hannover 2014.
- 30 F. Hauk, Ph.D. Thesis, Technische Universität München 2011.
- 31 P. Ptáček, M. Křečková, F. Šoukal, T. Opravil, J. Havlica, J. Brandštetr, Powder Technol. 2012, 232, 24–30. DOI: https://doi.org/10.1016/j.powtec.2012.07.060
- 32 M. Uberoi, W. A. Punjak, F. Shadman, Prog. Energy Combust. Sci. 1990, 16 (4), 205–211. DOI: https://doi.org/10.1016/0360-1285(90)90029-3