Separation of Methane and Carbon Dioxide Gas Mixtures Using Activated Carbon Modified with 2-Methylimidazole
Corresponding Author
Xiao-Xin Zhang
Liaoning Shihua University, College of Chemistry, Chemical Engineering and Environmental Engineering, 113001 Fushun, China
Correspondence: Xiao-Xin Zhang ([email protected]), Liaoning Shihua University, College of Chemistry, Chemical Engineering and Environmental Engineering, Fushun 113001, China.Search for more papers by this authorPeng Xiao
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Search for more papers by this authorGuang-Jin Chen
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Search for more papers by this authorChang-Yu Sun
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Search for more papers by this authorLan-Ying Yang
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Search for more papers by this authorCorresponding Author
Xiao-Xin Zhang
Liaoning Shihua University, College of Chemistry, Chemical Engineering and Environmental Engineering, 113001 Fushun, China
Correspondence: Xiao-Xin Zhang ([email protected]), Liaoning Shihua University, College of Chemistry, Chemical Engineering and Environmental Engineering, Fushun 113001, China.Search for more papers by this authorPeng Xiao
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Search for more papers by this authorGuang-Jin Chen
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Search for more papers by this authorChang-Yu Sun
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Search for more papers by this authorLan-Ying Yang
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Search for more papers by this authorAbstract
Activated carbon was modified by loading 2-methylimidazole (mIm), ethanol, and glycol onto its surface and adopted to capture CO2 using the absorption-adsorption method. The modified activated carbon showed high selectivity for separating CH4+CO2 gas mixtures, compared with other methods to modify activated carbon given in the literature. The separation factor was 4.75 times higher than that for the fresh activated-carbon system, and the separation performance of the activated carbon increased with increasing amount of mIm. The addition of glycol showed greater potential to enhance the selectivity of the activated carbon than ethanol. A recycling test verified the stability of the modified activated carbon for CH4+CO2 gas mixture separation.
Supporting Information
Filename | Description |
---|---|
ceat201700402-sup-0001-misc_information.pdf54 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 B. Gonzalez, J. Blamey, M. J. Al-Jeboori, N. H. Florin, P. T. Clough, P. S. Fennell, Chem. Eng. Process. 2016, 103, 21–26. DOI: https://doi.org/10.1016/j.cep.2015.09.019
- 2 J. H. Cavka, C. A. Grande, G. Mondino, R. Blom, Ind. Eng. Chem. Res. 2014, 53 (40), 15500–15507. DOI: https://doi.org/10.1021/ie500421h
- 3 Z. Qiao, J. Zhou, X. Lu, Fluid Phase Equilib. 2014, 362 (3), 342–348. DOI: https://doi.org/10.1016/j.fluid.2013.10.050
- 4 S. Choi, T. Watanabe, T. H. Bae, D. S. Sholl, C. W. Jones, J. Phys. Chem. Lett. 2012, 3 (9), 1136–1141. DOI: https://doi.org/10.1021/jz300328j
- 5 Z. J. Liang, M. Marshall, C. H. Ng, A. L. Chaffee, Energy Fuels 2013, 27 (12), 7612–7618. DOI: https://doi.org/10.1021/ef402212t
- 6 E. Atci, I. Erucar, S. Keskin, J. Phys. Chem. C 2011, 115 (14), 6833–6840. DOI: https://doi.org/10.1021/jp200429x
- 7 A. J. Romero-Anaya, M. A. Lillo-Ródenas, A. Linares-Solano, Carbon 2015, 83, 240–249. DOI: https://doi.org/10.1016/j.carbon.2014.10.092
- 8 J. M. Dias, M. C. M. Alvim-Ferraz, M. F. Almeida, J. Rivera-Utrilla, M. Sánchez-Polo, J. Environ. Manage. 2007, 85 (4), 833–846. DOI: https://doi.org/10.1016/j.jenvman.2007.07.031
- 9 Y. Gao, Q. Y. Yue, B. Y. Gao, Y. Y. Sun, W. Y. Wang, Q. Li, Y. Wang, Chem. Eng. J. 2013, 217 (2), 345–353. DOI: https://doi.org/10.1016/j.cej.2012.09.038
- 10 C. C. Small, Z. Hashisho, A. C. Ulrich, Fuel 2012, 92 (1), 69–76. DOI: https://doi.org/10.1016/j.fuel.2011.07.017
- 11 M. U. Dural, L. Cavas, S. K. Papageorgiou, F. K. Katsaros, Chem. Eng. J. 2011, 168 (1), 77–85. DOI: https://doi.org/10.1016/j.cej.2010.12.038
- 12 K. M. Lee, Y. H. Lim, C. J. Park, Y. M. Jo, Ind. Eng. Chem. Res. 2012, 51 (3), 1355–1363. DOI: https://doi.org/10.1021/ie2013532
- 13 P. Ning, F. R. Li, H. H. Yi, X. L. Tang, J. H. Peng, Y. D. Li, D. He, H. Deng, Sep. Purif. Technol. 2012, 98 (39), 321–326. DOI: https://doi.org/10.1016/j.seppur.2012.07.001
- 14 M. K. Aroua, W. M. A. W. Daud, C. Y. Yin, D. Adinata, Sep. Purif. Technol. 2008, 62 (3), 609–613. DOI: https://doi.org/10.1016/j.seppur.2008.03.003
- 15 X. X. Lei, Y. J. Xu, L. L. Zhu, X. H. Wang, RSC Adv. 2014, 4 (14), 7052–7057. DOI: https://doi.org/10.1039/C3RA47524G
- 16 M. B. Shiflett, D. W. Drew, R. A. Catini, A. Yokozeki, Energy Fuels 2010, 24 (10), 5781–5789. DOI: https://doi.org/10.1021/ef100868a
- 17 M. T. Mota-Martinez, M. Althuluth, M. C. Kroon, C. J. Peters, Fluid Phase Equilib. 2012, 332, 35–39. DOI: https://doi.org/10.1016/j.fluid.2012.06.014
- 18 G. Kumari, K. Jayaramulu, T. K. Maji, C. Narayana, J. Phys. Chem. A 2013, 117 (43), 11006–11012. DOI: https://doi.org/10.1021/jp407792a
- 19 H. R. Fu, Y. Kang, J. Zhang, Inorg. Chem. 2014, 53 (8), 4209–4214. DOI: https://doi.org/10.1021/ic5003226
- 20 C. C. Zheng, D. H. Liu, Q. Y. Yang, C. L. Zhong, J. G. Mi, Ind. Eng. Chem. Res. 2009, 48 (23), 10479–10484. DOI: https://doi.org/10.1021/ie901000x
- 21 X. X. Zhang, H. Liu, C. Y. Sun, P. Xiao, B. Liu, L. Y. Yang, C. H. Zhan, X. Q. Wang, N. Li, G. J. Chen, Sep. Purif. Technol. 2014, 130, 132–140. DOI: https://doi.org/10.1016/j.seppur.2014.04.028
- 22 A. F. Bushell, M. P. Attfield, C. R. Mason, P. M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. C. Jansen, M. Lanc, K. Friess, V. Shantarovich, V. Gustov, V. Isaeva, J. Membr. Sci. 2013, 427 (1), 48–62. DOI: https://doi.org/10.1016/j.memsci.2012.09.035
- 23 A. J. Hill, S. J. Pas, T. J. Bastow, M. I. Burgar, K. Nagai, L. G. Toy, B. D. Freeman, J. Membr. Sci. 2004, 243 (1–2), 37–44. DOI: https://doi.org/10.1016/j.memsci.2004.06.007
- 24 Y. Yampolskii, A. Alentiev, G. Bondarenko, Y. Kostina, M. Heuchel, Ind. Eng. Chem. Res. 2010, 49 (23), 12031–12037. DOI: https://doi.org/10.1021/ie100097a
- 25 P. G. Jessop, D. J. Heldebrant, X. W. Li, C. A. Eckert, C. L. Liotta, Nature 2005, 436 (7054), 1102. DOI: https://doi.org/10.1038/4361102b
- 26 X. Y. Li, M. Q. Hou, Z. F. Zhang, B. X. Han, G. Y. Yang, X. L. Wang, L. Z. Zou, Green Chem. 2008, 10 (8), 879–884. DOI: https://doi.org/10.1039/B801948G
- 27 K. E. Gutowski, E. J. Maginn, J. Am. Chem. Soc. 2008, 130 (44), 14690–14704. DOI: https://doi.org/10.1021/ja804654b
- 28 H. Liu, B. Liu, L. C. Lin, G. J. Chen, Y. Q. Wu, J. Wang, X. T. Gao, Y. N. Lv, Y. Pan, X. X. Zhang, X. R. Zhang, L. Y. Yang, C. Y. Sun, B. Smit, W. C. Wang, Nat. Commun. 2014, 5, 5147. DOI: https://doi.org/10.1038/ncomms6147
- 29 B. Yuan, X. F. Wu, Y. X. Chen, J. H. Huang, H. M. Luo, S. G. Deng, Environ. Sci. Technol. 2013, 47 (10), 5474–5480. DOI: https://doi.org/10.1021/es4000643
- 30 V. K. Saini, M. Andrade, M. L. Pinto, A. P. Carvalho, J. Pires, Sep. Purif. Technol. 2010, 75 (3), 366–376. DOI: https://doi.org/10.1016/j.seppur.2010.09.006
- 31 H. H. Yi, F. R. Li, P. Ning, X. L. Tang, J. H. Peng, Y. D. Li, H. Deng, Chem. Eng. J. 2013, s215/216 (3), 635–642. DOI: https://doi.org/10.1016/j.cej.2012.11.050
- 32 M. Saleh, J. N. Tiwari, K. C. Kemp, M. Yousuf, K. S. Kim, Environ. Sci. Technol. 2013, 47 (10), 5467–5473. DOI: https://doi.org/10.1021/es3052922