KH2PO4 Production by Cooling Crystallization Using Its Phase Equilibrium in the KH2PO4-KCl-C2H5OH-H2O System
Corresponding Author
Yongsheng Ren
Ningxia University, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, No. 539, West Helanshan Road, 750021 Yinchuan, China
Correspondence: Yongsheng Ren ([email protected]), State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, No. 539, West Helanshan Road, Yinchuan 750021, China.Search for more papers by this authorJiamin Liu
Ningxia University, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, No. 539, West Helanshan Road, 750021 Yinchuan, China
Search for more papers by this authorJingjing Ma
Ningxia University, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, No. 539, West Helanshan Road, 750021 Yinchuan, China
Search for more papers by this authorChao Cai
Ningxia University, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, No. 539, West Helanshan Road, 750021 Yinchuan, China
Search for more papers by this authorCorresponding Author
Yongsheng Ren
Ningxia University, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, No. 539, West Helanshan Road, 750021 Yinchuan, China
Correspondence: Yongsheng Ren ([email protected]), State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, No. 539, West Helanshan Road, Yinchuan 750021, China.Search for more papers by this authorJiamin Liu
Ningxia University, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, No. 539, West Helanshan Road, 750021 Yinchuan, China
Search for more papers by this authorJingjing Ma
Ningxia University, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, No. 539, West Helanshan Road, 750021 Yinchuan, China
Search for more papers by this authorChao Cai
Ningxia University, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, No. 539, West Helanshan Road, 750021 Yinchuan, China
Search for more papers by this authorAbstract
Solid-liquid phase equilibrium and physicochemical properties of the KCl-KH2PO4-C2H5OH-H2O system at 313.15 K were investigated by the method of isothermal solution saturation, and the equilibrium solids were analyzed by Schreinemaker's method of wet residues and verified by XRD. Drowning-out precipitation of KH2PO4 was carried out by mixing different ethanolic aqueous solutions, and crystal morphology was observed by polarizing microscopy. The phase diagrams exhibit one eutonic point, two univariant curves, and crystallization regions corresponding to KCl and KH2PO4. At all studied ethanol concentrations, the crystallization region of KH2PO4 is larger than that of KCl. The effect of KCl (ethanol) on crystal growth morphology and KH2PO4 product quality was studied.
Supporting Information
Filename | Description |
---|---|
ceat201600653-sup-0001-misc_information.pdf212.8 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 F. Zhao, Y. Lu, K. Wang, J. Chem. Eng. Data 2014, 59, 439–443. DOI: 10.1021/je400911m
- 2 R. Chen, G. Wang, J. Zhu, W. Yang, Ind. Miner. Process. 2001, 11, 5–7. DOI: 10.16283/j.cnki.hgkwyjg.2001.11.002
- 3 W. G. Yang, Y. H. Hu, Z. G. Chen, Fluid Phase Equilib. 2012, 314, 180–184. DOI: 10.1016/j.fluid.2011.09.027
- 4 B. W. Long, J. Li, R. R. Zhang, L. Wan, Fluid Phase Equilib. 2010, 297, 113–120. DOI: 10.1016/j.fluid.2010.06.021
- 5 X. Liu, M. M. Liang, Y. H. Hu, W. G. Yang, Y. Shi, J. J. Yin, Y. Liu, Thermochim. Acta 2014, 598, 45–50. DOI: 10.1016/j.tca.2014.11.008
- 6 H. S. Sang, J. Yong, J. Yeong, P. SoJin, Fluid Phase Equilib. 2014, 376, 105–110. DOI: 10.1016/j.fluid.2014.05.033
- 7 W. Shen, Y. S. Ren, J. J. Sun, Fluid Phase Equilib. 2016, 429, 196–204. DOI: 10.1016/j.fluid.2016.09.005
- 8 N. Zhang, J. Chen, H. P. Zhao, W. Shen, X. R. Zhang, Y. S. Ren, J. Chem. Thermodyn. 2015, 89, 233–239. DOI: 10.1016/j.jct.2015.05.025
- 9 O. C. Okorafor, J. Chem. Eng. Data 1999, 44, 488–490. DOI: 10.1021/je980243v
- 10 D. K. Brenner, E. W. Anderson, S. Lynn, J. M. Prausnitz, J. Chem. Eng. Data 1992, 37, 419–422. DOI: 10.1021/je00008a011
- 11 H. R. Galleguillos, M. E. Taboada, T. A. Graber, J. Chem. Eng. Data 2003, 48, 405–410. DOI: 10.1021/je020173z
- 12 H. Takiyama, T. Otsuhata, M. Matsuoka, Chem. Eng. Res. Des. 1998, 78, 809–814. DOI: 10.1205/026387698525559
- 13 M. E. Taboada, Fluid Phase Equilib. 2003, 204, 155–165. DOI: 10.1016/S0378-3812(02)00258-3
- 14 D. L. Xu, D. F. Xue, Phys. B 2005, 370, 84–89. DOI: 10.1016/j.physb.2005.08.043
- 15 W. Shen, Y. S. Ren, X. R. Zhang, Y. Q. Shi, J. Chem. Eng. Data 2015, 60, 2070–2078. DOI: 10.1021/acs.jced.5b00113
- 16 J. Eysseltová, in Alkali Metal Orthophosphates (Eds: J. Eysseltová, T. P. Dirske), Solubility Data Series, Vol. 31, Pergamon Press, New York 1988, 226–259.
- 17 S. Seif, J. M. Chang, K. Bhat, B. Penn, R. B. Lal, Cryst. Growth Des. 2001, 1, 359–362. DOI: 10.1021/cg010002a
- 18 H. A. Schott, J. Chem. Eng. Data 1961, 6, 324. DOI: 10.1021/je00103a002
- 19 X. R. Zhang, Y. S. Ren, W. J. Ma, H. J. Ma, J. Chem. Thermodyn. 2014, 77, 107–111. DOI: 10.1016/j.jct.2014.05.011
- 20 W. Shen, Y. L. Wang, T. T. He, X. R. Zhang, H. P. Zhao, Y. S. Ren, Fluid Phase Equilib. 2015, 403, 85–94. DOI: 10.1016/j.fluid.2015.06.014
- 21 S. F. Yang, G. B. Su, Z. D. Li, R. H. Jiang, J. Cryst. Growth 1999, 197, 383–387. DOI: 10.1016/S0022-0248(98)00944-0
- 22 G. H. Li, G. B. Su, X. X. Zhuang, Z. D. Li, Y. P. He, J. Cryst. Growth 2004, 269, 443–447. DOI: 10.1016/j.jcrysgro.2004.05.074
- 23 N. Zaitseva, J. Atherton, R. Rozsa, L. Carman, I. Smolsky, M. Runkel, R. Ryon, L. James, J. Cryst. Growth 1999, 197, 911–920. DOI: 10.1016/S0022-0248(98)01095-1
- 24 T. Zhu, C. M. Li, Chem. Fert. Ind. 2002, 1, 23–26.
- 25 R. H. Yin, L. G. Xue, Z. Z. Yu, Mater. Prot. 2007, 40, 67–69. DOI: 10.16577/j.cnki.42-1215
- 26 X. R. Zhang, Y. S. Ren, P. Li, H. Ma, W. J. Ma, H. J. Ma, Y. N. Wang, L. X. Kong, J. Chem. Eng. Data 2014, 59, 3969–3974. DOI: 10.1021/je500854m
- 27 D. L. Xu, D. F. Xue, Phys. B 2005, 370, 84–89. DOI: 10.1016/j.physb.2005.08.043
- 28 D. L. Xu, D. F. Xue, R. Henryk, J. Mol. Struct. 2005, 740, 37–45. DOI: 10.1016/j.molstruc.2005.01.016
- 29 D. A. Vorontsov, V. P. Ershov, V. N. Portnov, V. I. Rodchenkov, A. A. Sibirkin, J. Cryst. Growth 2011, 318, 122–124. DOI: 10.1016/j.jcrysgro.2010.10.086