Physicochemical Processes Occurring inside Clusters Consisting of FCC Catalyst Particles
Xiaogang Shi
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Search for more papers by this authorYingya Wu
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Search for more papers by this authorMin Wang
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Search for more papers by this authorLinying Lv
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Search for more papers by this authorJinsen Gao
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Search for more papers by this authorCorresponding Author
Xingying Lan
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Correspondence: Xingying Lan ([email protected]), State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 102249 Beijing, China.Search for more papers by this authorXiaogang Shi
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Search for more papers by this authorYingya Wu
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Search for more papers by this authorMin Wang
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Search for more papers by this authorLinying Lv
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Search for more papers by this authorJinsen Gao
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Search for more papers by this authorCorresponding Author
Xingying Lan
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, 102249 Beijing, China
Correspondence: Xingying Lan ([email protected]), State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 102249 Beijing, China.Search for more papers by this authorAbstract
Three-dimensional computational fluid dynamics simulations were performed to study gas flow, heat transfer, and catalytic reactions of vacuum gas oil inside spherical and ellipsoidal clusters consisting of fluid catalytic cracking catalyst particles. Simulation results with respect to gas flow inside the cluster and convective heat transfer between the gas and catalyst particle agreed well with results from the literature. Simulation results indicated that the gas stayed longer and had a higher temperature inside the cluster than that in the main stream, which intensified secondary reactions of gasoline species in the gas. At a higher cluster porosity, it was predicted that the gas could flow through the cluster with lower resistance and that secondary reactions lessened.
Supporting Information
Filename | Description |
---|---|
ceat201600551-sup-0001-misc_information.pdf644.3 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 J. S. Gao, C. M. Xu, S. X. Lin, G. H. Yang, Y. C. Guo, AIChE J. 1999, 45 (5), 1095–1113. DOI: 10.1002/aic.690450517
- 2 P. F. He, C. Zhu, T. C. Ho, AIChE J. 2015, 61 (2), 610–619. DOI: 10.1002/aic.14665
- 3 G. Q. Chen, Z. H. Luo, X. Y. Lan, C. M. Xu, J. S. Gao, Chem. Eng. J. 2013, 228, 352–365. DOI: 10.1016/j.cej.2013.02.068
- 4 A. K. Das, E. Baudrez, G. B. Marin, G. J. Heynderickx, Ind. Eng. Chem. Res. 2003, 42 (12), 2602–2617. DOI: 10.1021/ie020744g
- 5 J. S. Gao, C. M. Xu, S. X. Lin, G. H. Yang, Y. C. Guo, AIChE J. 2001, 47 (3), 677–692. DOI: 10.1002/aic.690470315
- 6 J. H. Li, Chem. Eng. J. 2015, 278, 541–555. DOI: 10.1016/j.cej.2014.10.005
- 7 J. G. Hao, Y. F. Zhao, M. Ye, Z. M. Liu, Chem. Eng. Technol. 2016, 39 (5), 927–934. DOI: 10.1002/ceat.201500660
- 8 J. Wang, B. Xu, T. Zhou, X. Z. Liang, Chem. Eng. Technol. 2016, 39 (8), 1490–1496. DOI: 10.1002/ceat.201500190
- 9 B. M. Kaye, R. P. Boardman, Proc. of the Symp. on the Interaction of Fluids and Particles, 1962, 17–21.
- 10 J. Xu, J. X. Zhu, Chem. Eng. J. 2011, 168 (1), 376–389. DOI: 10.1016/j.cej.2011.01.044
- 11 K. Agrawal, P. N. Loezos, M. Syamlal, S. Sundaresan, J. Fluid. Mech. 2001, 445, 151–185. DOI: 10.1017/S0022112001005663
- 12 J. McMillan, F. Shaffer, B. Gopalan, J. W. Chew, C. Hrenya, R. Hays, S. B. R. Karri, R. Cocco, Chem. Eng. Sci. 2013, 100, 39–51. DOI: 10.1016/j.ces.2013.02.047
- 13 R. Cocco, F. Shaffer, R. Hays, S. B. R. Karri, T. Knowlton, Powder Technol. 2010, 203 (1), 3–11. DOI: 10.1016/j.powtec.2010.03.023
- 14 C. M. H. Brereton, J. R. Grace, Chem. Eng. Sci. 1993, 48 (14), 2565–2572. DOI: 10.1016/0009-2509(93)80267-T
- 15 M. Horio, H. Kuroki, Chem. Eng. Sci. 1994, 49 (15), 2413–2421. DOI: 10.1016/0009-2509(94)E0071-W
- 16 C. Guenther, R. Breault, Powder Technol. 2007, 173 (3), 163–173. DOI: 10.1016/j.powtec.2006.12.016
- 17 H. Z. Li, Y. S. Xia, Y. K. Tung, M. Kwauk, Powder Technol. 1991, 66 (3), 231–235. DOI: 10.1016/0032-5910(91)80035-H
- 18 U. Lackermeier, C. Rudnick, J. Werther, A. Bredebusch, H. Burkhardt, Powder Technol. 2001, 114 (1–3), 71–83. DOI: 10.1016/S0032-5910(00)00265-5
- 19 F. Shaffer, B. Gopalan, R. W. Breault, R. Cocco, S. B. R. Karri, R. Hays, T. Knowlton, Powder Technol. 2013, 242, 86–99. DOI: 10.1016/j.powtec.2013.01.012
- 20 A. E. C. Varas, E. A. J. F. Peters, J. A. M. Kuipers, Chem. Eng. Sci. 2016, in press. DOI: 10.1016/j.ces.2016.08.030
- 21 K. S. Lim, J. Zhou, C. Finley, J. R. Grace, C. J. Lim, C. M. H. Brereton, in Proc. of the Fifth Int. Conf. on Circulating Fluidized Beds, Science Press, Beijing, 1997.
- 22 M. Rhodes, H. Mineo, T. Hirama, Powder Technol. 1992, 70 (3), 207–214. DOI: 10.1016/0032-5910(92)80055-2
- 23 J. Capecelatro, P. Pepiot, O. Desjardins, Chem. Eng. J. 2014, 245, 295–310. DOI: 10.1016/j.cej.2014.02.040
- 24 A. T. Harris, J. F. Davidson, R. B. Thorpe, Powder Technol. 2002, 127 (2), 128–143. DOI: 10.1016/S0032-5910(02)00114-6
- 25 J. Xu, J. S. Zhu, Ind. Eng. Chem. Res. 2012, 51 (4), 2143–2151. DOI: 10.1021/ie200849h
- 26 P. D. Noymer, L. R. Glicksman, Chem. Eng. Sci. 2000, 55 (22), 5283–5289. DOI: 10.1016/S0009-2509(00)00171-8
- 27 J. S. Yang, J. Zhu, Powder Technol. 2014, 254, 407–415. DOI: 10.1016/j.powtec.2014.01.015
- 28 S. V. Manyele, J. H. Parssinen, J. X. Zhu, Chem. Eng. J. 2002, 88 (1–3), 151–161. DOI: 10.1016/S1385-8947(01)00299-6
- 29 J. W. Chew, D. M. Parker, R. A. Cocco, C. M. Hrenya, Chem. Eng. J. 2011, 178, 348–358. DOI: 10.1016/j.cej.2011.10.020
- 30 J. W. Chew, R. Hays, J. G. Findlay, T. M. Knowlton, S. B. R. Karri, R. A. Cocco, C. M. Hrenya, Chem. Eng. Sci. 2012, 68 (1), 72–81. DOI: 10.1016/j.ces.2011.09.012
- 31 J. W. Chew, R. Hays, J. G. Findlay, T. M. Knowlton, S. B. R. Karri, R. A. Cocco, C. M. Hrenya, Chem. Eng. Sci. 2012, 68 (1), 82–93. DOI: 10.1016/j.ces.2011.09.011
- 32 X. H. Liu, S. Q. Gao, W. L. Song, J. H. Li, Chem. Eng. Sci. 2006, 61 (21), 7087–7095. DOI: 10.1016/j.ces.2006.08.001
- 33 A. K. Sharma, K. Tuzla, J. Matsen, J. C. Chen, Powder Technol. 2000, 111 (1–2), 114–122. DOI: 10.1016/S0032-5910(00)00247-3
- 34 V. Jiradilok, D. Gidaspow, S. Damronglerd, W. J. Koves, R. Mostofi, Chem. Eng. Sci. 2006, 61 (17), 5544–5559. DOI: 10.1016/j.ces.2006.04.006
- 35 T. McKeen, T. Pugsley, Powder Technol. 2003, 129 (1–3), 139–152. DOI: 10.1016/S0032-5910(02)00294-2
- 36 J. Yerushalmi, D. H. Tuner, A. M. Squires, Ind. Eng. Chem. Process Des. Dev. 1976, 15, 47–53. DOI: 10.1021/i260057a010
- 37 J. Yerushalmi, N. T. Cankurt, Powder Technol. 1979, 24 (2), 187–205. DOI: 10.1016/0032-5910(79)87036-9
- 38 C. W. Chan, J. P. K. Seville, D. J. Parker, J. Baeyens, Powder Technol. 2010, 203 (2), 187–197. DOI: 10.1016/j.powtec.2010.05.008
- 39
R. Bader, J. Findlay, T. M. Knowlton, in Circulating Fluidized Bed Technology II (Eds: P. Basu, J. Large), Pergamon Press, Oxford
1988, 123–137.
10.1016/B978-0-08-036225-0.50016-2 Google Scholar
- 40 T. J. O'Brien, M. Syamlal, in Circulating Fluidized Bed Technology IV (Eds: A. A. Avidan), AIChE, New York 1993, 345–350.
- 41 D. Geldart, A. C. Y. Wong, AIChE Symp. Ser. 1987, 83 (255), 1–9.
- 42 J. Baeyens, D. Geldart, S. Y. Wu, Powder Technol. 1992, 71 (1), 71–80. DOI: 10.1016/0032-5910(92)88006-4
- 43 J. H. Choi, J. M. Suh, I. Y. Chang, D. W. Shun, C. K. Yi, J. E. Son, S. D. Kim, Powder Technol. 2001, 121 (2–3), 190–194. DOI: 10.1016/S0032-5910(01)00333-3
- 44 J. L. Li, T. Nakazato, K. Kato, Chem. Eng. Sci. 2004, 59 (13), 2777–2782. DOI: 10.1016/j.ces.2004.02.021
- 45 T. A. Berry, T. R. McKeen, T. S. Pugsley, A. K. Dalai, Ind. Eng. Chem. Res. 2004, 43 (18), 5571–5581. DOI: 10.1021/ie0306877
- 46 A. Gianetto, H. I. Farag, A. P. Blasetti, H. I. Delasa, Ind. Eng. Chem. Res. 1994, 33 (12), 3053–3062. DOI: 10.1021/ie00036a021
- 47 S. V. Nayak, S. L. Joshi, V. V. Ranade, Chem. Eng. Sci. 2005, 60 (22), 6049–6066. DOI: 10.1016/j.ces.2005.04.046
- 48 R. Beetstra, M. A. van der Hoef, J. A. M. Kuipers, Comput. Fluids 2006, 35 (8–9), 966–970. DOI: 10.1016/j.compfluid.2005.03.009
- 49 S. Chen, G. D. Doolen, Annu. Rev. Fluid Mech. 1998, 30, 329–364. DOI: 10.1146/annurev.fluid.30.1.329
- 50 M. T. Shah, R. P. Utikar, M. O. Tade, G. M. Evans, V. K. Pareek, Chem. Eng. Sci. 2013, 102, 365–372. DOI: 10.1016/j.ces.2013.08.010
- 51 W. E. Ranz, W. R. Marshall, Chem. Eng. Process. 1952, 48 (3), 141–146.
- 52 S. Sundaresan, Curr. Opin. Chem. Eng. 2013, 2 (3), 325–330. DOI: 10.1016/j.coche.2013.06.003