Continuous-Flow Synthesis and Functionalization of Magnetite: Intensified Process for Tailored Nanoparticles
Franz Haseidl
Technische Universität München, Department of Chemistry, Garching b. München, Germany.
Technische Universität München, Catalysis Research Center, Garching b. München, Germany.
Search for more papers by this authorBarbara Müller
Technische Universität München, Department of Chemistry, Garching b. München, Germany.
Technische Universität München, Catalysis Research Center, Garching b. München, Germany.
Search for more papers by this authorCorresponding Author
Olaf Hinrichsen
Technische Universität München, Department of Chemistry, Garching b. München, Germany.
Technische Universität München, Catalysis Research Center, Garching b. München, Germany.
Technische Universität München, Department of Chemistry, Garching b. München, Germany.Search for more papers by this authorFranz Haseidl
Technische Universität München, Department of Chemistry, Garching b. München, Germany.
Technische Universität München, Catalysis Research Center, Garching b. München, Germany.
Search for more papers by this authorBarbara Müller
Technische Universität München, Department of Chemistry, Garching b. München, Germany.
Technische Universität München, Catalysis Research Center, Garching b. München, Germany.
Search for more papers by this authorCorresponding Author
Olaf Hinrichsen
Technische Universität München, Department of Chemistry, Garching b. München, Germany.
Technische Universität München, Catalysis Research Center, Garching b. München, Germany.
Technische Universität München, Department of Chemistry, Garching b. München, Germany.Search for more papers by this authorAbstract
The spinning disc reactor (SDR) is used for the size-selective synthesis and functionalization of nanoscale superparamagnetic iron oxide particles in a single-step continuous-flow process. Nanometer-sized magnetite (Fe3O4) particles are precipitated in a highly sheared thin liquid film on a rapidly rotating disc. A novel liquid-liquid synthesis is presented whereas control over particle size is reached via adjustable micromixing properties on the disc. The nanoparticles with tailored size, narrow size distribution, and high saturation magnetization can thus meet the special requirements for the use in biotechnological, medical, and catalytic applications. The functionalization of the particles with oleic acid for higher biocompatibility and better dispersibility is accomplished in the SDR in a single step.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ceat_201600163_sm_miscellaneous_information.pdf240.1 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
U. Schwertmann, R. M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization, Wiley-VCH, Weinheim 2000.
10.1002/9783527613229 Google Scholar
- 2
A.-H. Lu, E. L. Salabas, F. Schüth, Angew. Chem., Int. Ed. 2007, 119 (8), 1242–1266.
10.1002/ange.200602866 Google Scholar
- 3 L. Babes, B. Denizot, G. Tanguy, J. J. L. Jeune, P. Jallet, J. Colloid Interface Sci. 1999, 212 (2), 474–482.
- 4 M. Helminger, B. Wu, T. Kollmann, D. Benke, D. Schwahn, V. Pipich, D. Faivre, D. Zahn, H. Coelfen, Adv. Funct. Mater. 2014, 24 (21), 3187–3196.
- 5 J. D. G. Duran, J. L. Arias, V. Gallardo, A. V. Delgado, J. Pharm. Sci. 2008, 97 (8), 2948–2983.
- 6 S. Berensmeier, Appl. Microbiol. Biotechnol. 2006, 73 (3), 495–504.
- 7 M. Franzreb, M. Siemann-Herzberg, T. Hobley, O. T. Thomas, Appl. Microbiol. Biotechnol. 2006, 70 (5), 505–516.
- 8 Y. Gonzalez-Alfaro, P. Aranda, F. M. Fernandes, B. Wicklein, M. Darder, E. Ruiz-Hitzky, Adv. Mater. 2011, 23 (44), 5224–5228.
- 9 B. Pieters, R. Williams, C. Webb, in Colloid and Surface Engineering: Applications in the Process Industries (Ed: R. A. Williams), 1st ed., Butterworth-Heinemann, Woburn, MA 1991.
- 10 Y. Zhang, S. Xu, Y. Luo, S. Pan, H. Ding, G. Li, J. Mater. Chem. 2011, 21, 3664–3671.
- 11 M. Ikenberry, L. Pena, D. Wei, H. Wang, S. H. Bossmann, T. Wilke, D. Wang, V. R. Komreddy, D. P. Rillema, K. L. Hohn, Green Chem. 2014, 16, 836.
- 12 K. S. Wilson, J. D. Goff, J. S. Riffle, L. A. Harris, T. G. St Pierre, Polym. Adv. Technol. 2005, 16 (2–3), 200–211.
- 13 S.-J. Yen, E.-C. Chen, R.-K. Chiang, T.-M. Wu, J. Polym. Sci., Part B: Polym. Phys. 2008, 46 (13), 1291–1300.
- 14 I. Bilecka, I. Djerdj, M. Niederberger, Chem. Commun. 2008, 886–888.
- 15 X. Wang, J. Zhuang, Q. Peng, Y. Li, Nature 2005, 437, 121–124.
- 16 C. Liu, B. Zou, A. J. Rondinone, Z. J. Zhang, J. Phys. Chem. B 2000, 104 (6), 1141–1145.
- 17 V. Yathindranath, L. Rebbouh, D. F. Moore, D. W. Miller, J. van Lierop, T. Hegmann, Adv. Funct. Mater. 2011, 21 (8), 1457–1464.
- 18 S. Sun, H. Zeng, J. Am. Chem. Soc. 2002, 124 (28), 8204–8205.
- 19 D. K. Kim, Y. Zhang, W. Voit, K. V. Rao, M. Muhammed, J. Magn. Magn. Mater. 2001, 225 (1–2), 30–36.
- 20 D. Forge, A. Roch, S. Laurent, H. Tellez, Y. Gossuin, F. Renaux, L. Vander Elst, R. N. Muller, J. Phys. Chem. C 2008, 112 (49), 19178–19185.
- 21 S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R. N. Muller, Chem. Rev. 2008, 108, 2064–2110.
- 22 X. Liang, X. Wang, J. Zhuang, Y. Chen, D. Wang, Y. Li, Adv. Funct. Mater. 2006, 16 (14), 1805–1813.
- 23 R. Massart, IEEE Trans. Magn. 1981, 17 (2), 1247–1248.
- 24 J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, M. Li, J. Biomed. Mater. Res., Part A 2007, 80 (2), 333–341.
- 25 J.-P. Jolivet, Metal Oxide Chemistry and Synthesis: From Solution to Solid State, John Wiley & Sons, Chichester 2000.
- 26 A. A. Khaleel, Chem. – Eur. J. 2004, 10 (4), 925–932.
- 27 L. L. Vatta, R. D. Sanderson, K. R. Koch, J. Magn. Magn. Mater. 2007, 311 (1), 114–119.
- 28 C. Ramshaw, Green Chem. 1999, 1, G15–G17.
- 29 N. C. Jacobsen, O. Hinrichsen, Ind. Eng. Chem. Res. 2012, 51 (36), 11643–11652.
- 30 O. K. Matar, C. J. Lawrence, Phys. Fluids 2005, 17, 1–20.
- 31 I. Boiarkina, S. Pedron, D. A. Patterson, Appl. Catal., B 2011, 110, 14–24.
- 32 H. C. Yatmaz, C. Wallis, C. R. Howarth, Chemosphere 2001, 42 (4), 397–403.
- 33 K. V. K. Boodhoo, R. J. Jachuck, Green Chem. 2000, 2, 235–244.
- 34 S. D. Pask, O. Nuyken, Z. Cai, Polym. Chem. 2012, 3, 2698–2707.
- 35 K. J. Hartlieb, C. L. Raston, M. Saunders, Chem. Mater. 2007, 19 (23), 5453–5459.
- 36 C. Y. Tai, Y. H. Wang, Y. W. Kuo, M. H. Chang, H. S. Liu, Chem. Eng. Sci. 2009, 64 (13), 3112–3119.
- 37 X. Chen, N. M. Smith, K. S. Iyer, C. L. Raston, Chem. Soc. Rev. 2014, 43, 1387–1399.
- 38 J. R. Burns, C. Ramshaw, R. J. Jachuck, Chem. Eng. Sci. 2003, 58 (11), 2245–2253.
- 39 W. Nusselt, Z. Ver. Dtsch. Ing. 1916, 60, 541–546.
- 40 A. G. Emslie, F. T. Bonner, L. G. Peck, J. Appl. Phys. 1958, 29 (5), 858–862.
- 41 A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 1941, 30 (4), 299–303.
- 42 F. Haseidl, N. C. Jacobsen, O. Hinrichsen, Chem. Ing. Tech. 2013, 85 (4), 540–549.
- 43
J. Park, J. Joo, S. G. Kwon, Y. Jang, T. Hyeon, Angew. Chem., Int. Ed. 2007, 119 (25), 4714–4745.
10.1002/ange.200603148 Google Scholar
- 44 S. F. Chin, K. S. Iyer, C. L. Raston, M. Saunders, Adv. Funct. Mater. 2008, 18 (6), 922–927.
- 45 R. G. Moharir, P. R. Gogate, V. K. Rathod, Can. J. Chem. Eng. 2012, 90, 996–1005.
- 46 H.-C. Roth, S. P. Schwaminger, M. Schindler, F. E. Wagner, S. Berensmeier, J. Magn. Magn. Mater. 2015, 377, 81–89.
- 47 A. Demortiere, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, S. Begin-Colin, Nanoscale 2011, 3 (1), 225–232.
- 48 J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, T. Hyeon, Nat. Mater. 2004, 3 (12), 891–895.
- 49 F. Soderlind, H. Pedersen, R. M. Petoral, P.-O. Kall, K. Uvdal, J. Colloid Interface Sci. 2005, 288 (1), 140–148.
- 50 A. Pich, S. Bhattacharya, A. Ghosh, H.-J. P. Adler, Polymer 2005, 46 (13), 4596–4603.
- 51 K. Petcharoen, A. Sirivat, Mater. Sci. Eng., B 2012, 177 (5), 421–427.
- 52 T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. B. Na, J. Am. Chem. Soc. 2001, 123 (51), 12798–12801.
- 53 A. Aoune, C. Ramshaw, Int. J. Heat Mass Transfer 1999, 42, 2543.
- 54 M. Fang, V. Ström, R. T. Olsson, L. Belova, K. V. Rao, Nanotechnology 2012, 23 (14), 145601.
- 55 S. Mahadevan, G. Gnanaprakash, J. Philip, B. P. C. Rao, T. Jayakumar, Phys. E 2007, 39 (1), 20–25.
- 56 D. W. Strangway, B. E. McMahon, R. M. Honea, Science 1967, 158 (3802), 785–787.
- 57 B. L. Cushing, V. L. Kolesnichenko, C. J. O'Connor, Chem. Rev. 2004, 104 (9), 3893–3946.
- 58 A. Durdureanu-Angheluta, A. Dascalu, A. Fifere, A. Coroaba, L. Pricop, H. Chiriac, V. Tura, M. Pinteala, B. C. Simionescu, J. Magn. Magn. Mater. 2012, 324 (9), 1679–1689.
- 59 K. Landfester, Macromol. Rapid Commun. 2001, 22 (12), 896–936.
- 60 S. A. Gomez-Lopera, R. C. Plaza, A. V. Delgado, J. Colloid Interface Sci. 2001, 240 (1), 40–47.
- 61 Z. Huang, F. Tang, J. Colloid Interface Sci. 2005, 281 (2), 432–436.
- 62 S. Wan, J. Huang, H. Yan, K. Liu, J. Mater. Chem. 2006, 16, 298–303.
- 63 Z. Li, Q. Sun, M. Gao, Angew. Chem., Int. Ed. 2005, 44 (1), 123–126.
- 64 G. Gnanaprakash, S. Mahadevan, T. Jayakumar, P. Kalyanasundaram, J. Philip, B. Raj, Mater. Chem. Phys. 2007, 103 (1), 168–175.
- 65 C. R. Vestal, Z. J. Zhang, J. Am. Chem. Soc. 2003, 125 (32), 9828–9833.