Kinetics of Isophorone Synthesis via Self-Condensation of Supercritical Acetone
Jun Mei
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
Search for more papers by this authorZhirong Chen
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
Search for more papers by this authorShenfeng Yuan
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
Search for more papers by this authorHaoran Li
Department of Chemistry, Zhejiang University, Hangzhou, China.
Search for more papers by this authorCorresponding Author
Hong Yin
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.Search for more papers by this authorJun Mei
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
Search for more papers by this authorZhirong Chen
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
Search for more papers by this authorShenfeng Yuan
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
Search for more papers by this authorHaoran Li
Department of Chemistry, Zhejiang University, Hangzhou, China.
Search for more papers by this authorCorresponding Author
Hong Yin
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.Search for more papers by this authorAbstract
A kinetic study on isophorone synthesis via self-condensation of supercritical acetone catalyzed by aqueous KOH in a tubular flow reactor was conducted. The intention was to improve the isophorone selectivity, with the main approach to reduce the by-products higher-boiling than isophorone. A higher isophorone selectivity was obtained with increased reaction temperature. The structures of main products were determined by gas chromatography-mass spectrometry and nuclear magnetic resonance analysis. The key reaction pathways and a corresponding kinetic model were proposed. The fitted apparent activation energies indicated the reason of isophorone selectivity improvement in that high temperature favors reversion of reversible by-products.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ceat_201600080_sm_miscellaneous_information.pdf120.4 KB | miscellaneous_information |
ceat_201600080_sm_miscellaneous_information.xlsx26.4 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 P. J. Darda, V. V. Ranade, Chem. Eng. J. 2012, 207–208, 349–367.
- 2 Y. Liu, K. Zhou, M. Lu, L. Wang, Z. Wei, X. Li, Ind. Eng. Chem. Res. 2015, 54 (37), 9124–9132.
- 3 R. J. Mcmahon, K. E. Wiegers, S. G. Smith, J. Org. Chem. 1981, 46, 99–101.
- 4 Z. Yao, X. Hu, J. Mao, H. Li, Green Chem. 2009, 11 (12), 2013.
- 5 J. Mao, X. Hu, H. Li, Y. Sun, C. Wang, Z. Chen, Green Chem. 2008, 10 (8), 827.
- 6 W. Yi, Master Thesis, Zhejiang University 2006.
- 7 Societe Industrielle des Derives de L'Acetylene, GB733650, 1955.
- 8 I. Krivtsov, L. Faba, E. Díaz, S. Ordóñez, V. Avdin, S. Khainakov, J. R. Garcia, Appl. Catal., A 2014, 477, 26–33.
- 9 M. H. Al-Hazmi, Y. Choi, A. W. Apblett, Catal. Lett. 2013, 143 (7), 705–716.
- 10 L. Faba, E. Díaz, S. Ordóñez, Appl. Catal., B 2013, 142–143, 387–395.
- 11 L. Faba, Y. A. Criado, E. Gallegos-Suárez, M. Pérez-Cadenas, E. Díaz, I. Rodríguez-Ramos, A. Guerrero-Ruiz, S. Ordóñez, Appl. Catal., A 2013, 458, 155–161.
- 12 L. Faba, E. Díaz, S. Ordóñez, Appl. Catal., B 2012, 113–114, 201–211.
- 13 C. Ma, G. Liu, Z. Wang, Y. Li, J. Zheng, W. Zhang, M. Jia, React. Kinet. Catal. Lett. 2009, 98 (1), 149–156.
- 14 M. Zamora, T. López, R. Gómez, M. Asomoza, R. Meléndrez, Appl. Surf. Sci. 2005, 252 (3), 828–832.
- 15 A. S. Canning, S. D. Jackson, E. Mcleod, E. M. Vass, Appl. Catal., A 2005, 289 (1), 59–65.
- 16 M. Zamora, T. López, R. Gómez, M. Asomoza, R. Melendrez, Catal. Today 2005, 107–108, 289–293.
- 17 J. I. Di Cosimo, V. K. Díez, C. R. Apesteguía, Appl. Catal., A 1996, 137 (1), 149–166.
- 18 J. I. Di Cosimo, C. R. Apestegu, J. Mol. Catal. A: Chem. 1998, 130 (1–2), 177–185.
- 19 M. Orschel, R. Jansen, M. Maier, J. Nitz, CN Patent 201110140108, 2011.
- 20 S. A. Ballard, V. E. Haury, E. Cerrito, US Patent 2419051, 1947.
- 21 S. H. Macallister, W. A. Bailey, US Patent 2351352, 1944.
- 22 S. A. Ballard, B. A. V. E. Haury, E. Cerrito, US Patent 2344226, 1944.
- 23 J. Nitz, S. Kohlstruk, R. Jansen, M. Orschel, A. Merkel, M. Demming, M. Mendorf, J. Doering, A. Hengstermann, A. Hoff, A. Müller, CN Patent 201310421078, 2013.
- 24 W. M. Haynes, CRC Handbook of Chemistry and Physics, 90th ed., CRC Press, Boca Raton, FL 2010, 3–312.
- 25 Z. Chen, H. Li, H. Yin, Y. Xu, C. Wang, CN Patent 20091102119, 2010.
- 26 J. R. Walton, B. Yeomans, US Patent 3981918, 1976.
- 27 B. Han, Supercritical Fluid Science and Technology, China Petrochemical Press, Beijing 2005, 49–171.
- 28 P. E. Savage, S. Gopalan, T. I. Mizan, C. J. Martino, E. E. Brock, AIChE J. 1995, 41 (7), 1723–1778.
- 29 J. Mei, J. Mao, Z. Chen, S. Yuan, H. Li, H. Yin, Chem. Eng. Sci. 2015, 131, 213–218.
- 30 M. Orschel, R. Jansen, M. Maier, G. Grund, M. Schwarz, J. Nitz, A. Hengstermann, CN Patent 201180058421, 2011.
- 31 J. An, L. Bagnell, T. Cablewski, C. R. Strauss, R. W. Trainor, J. Org. Chem. 1997, 62 (8), 2505–2511.
- 32 O. Levenspiel, Chemical Reaction Engineering, 3rd ed., John Wiley & Sons, New York 1999, 158–159.
- 33 J. R. Kittrell, Adv. Chem. Eng. 1970, 8, 97–183.