Raman, UV, NIR, and Mid-IR Spectroscopy with Focused Beam Reflectance Measurement in Monitoring Polymorphic Transformations
Elena Simone
Loughborough University, Department of Chemical Engineering, Loughborough, UK.
Search for more papers by this authorAli N. Saleemi
Loughborough University, Department of Chemical Engineering, Loughborough, UK.
Search for more papers by this authorCorresponding Author
Zoltan K. Nagy
Loughborough University, Department of Chemical Engineering, Loughborough, UK.
Purdue University, School of Chemical Engineering, West Lafayette, IN, USA.
Purdue University, School of Chemical Engineering, West Lafayette, IN, USA.===Search for more papers by this authorElena Simone
Loughborough University, Department of Chemical Engineering, Loughborough, UK.
Search for more papers by this authorAli N. Saleemi
Loughborough University, Department of Chemical Engineering, Loughborough, UK.
Search for more papers by this authorCorresponding Author
Zoltan K. Nagy
Loughborough University, Department of Chemical Engineering, Loughborough, UK.
Purdue University, School of Chemical Engineering, West Lafayette, IN, USA.
Purdue University, School of Chemical Engineering, West Lafayette, IN, USA.===Search for more papers by this authorAbstract
Raman, UV, NIR, and IR spectroscopy are commonly used techniques to monitor solute concentration and solid composition during crystallization processes of polymorphic compounds. Since a comprehensive study and comparison of the ability of these techniques to detect polymorphic transformation in the same system has not been performed yet, this work aimed at developing a complete quantitative calibration model that describes the process in terms of solute concentration and solid composition for each technique. A comparison between the different process analytical technology tools was conducted using various physical and mathematical approaches. Chemometrics techniques, multivariate and univariate approaches, and different regression techniques were tested and an integrated calibration model is proposed.
References
- 1 Guidance for Industry. PAT, a Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance, U.S. Food and Drug Administration, Rockville, MD 2004.
- 2 W. Chew, P. Sharrat, Anal. Methods 2010, 2, 1412–1438.
- 3 Z. K. Nagy, G. Fevotte, H. Kramer, L. L. Simon, Chem. Eng. Res. Des. 2013, 91 (10), 1903–1922.
- 4 L. L. Simon, S. Reinlein, K. Hungerbuehler, 18th Int. Symp. of Industrial Crystallization – ISIC 18, Zurich, September 2011.
- 5 L. Helmdach, F. Schwartz, J. Ulrich, Chem. Eng. Technol. 2014, 37 (2), 213–220.
- 6 E. Gagniere, F. Puel, D. Mangin, J. P. Valour, A. Rivoire, M. Galven, O. Monnier, J. P. Klein, Chem. Eng. Technol. 2012, 35 (6), 1039–1044.
- 7 Y. Yang, Z. K. Nagy, Cryst. Growth Des. 2014, 14 (2), 687–698.
- 8 M. P. Freitas, A. Sabadin, L. M. Silva, F. M. Giannotti, D. A. do Couto, E. Tonhi, R. S. Medeiros, G. L. Coco, V. F. T. Russo, J. A. Martins, J. Pharm. Biomed. Anal. 2005, 39, 17–21.
- 9 S. Kadam, E. van der Windt, P. J. Daudey, H. J. M. Kramer, Cryst. Growth Des. 2010, 10 (6), 2629–2640.
- 10 O. Berntsson, L. Danielsson, M. O. Johansson, S. Folestad, Anal. Chim. Acta 2000, 419 (1), 45–54.
- 11 B. Van Eerdenbrugh, L. S. Taylor, Int. J. Pharm. 2011, 417, 3–16.
- 12 S. Wartewig, R. H. H. Neubert, Adv. Drug Delivery Rev. 2005, 57, 1144–1170.
- 13 M. R. Abu Bakar, Z. K. Nagy, C. D. Rielly, Org. Proc. Res. Dev. 2009, 13, 1343–1356.
- 14 M. R. Abu Bakar, Z. K. Nagy, C. D. Rielly, S. E. Dann, Int. J. Pharm. 2011, 414, 86–103.
- 15 K. S. Howard, Z. K. Nagy, B. Saha, A. L. Robertson, G. Steele, Org. Proc. Res. Dev. 2009, 13 (3), 590–597.
- 16 K. S. Howard, Z. K. Nagy, B. Saha, A. L. Robertson, G. Steele, D. Martin, Cryst. Growth Des. 2009, 9 (9), 3964–3975.
- 17 R. Gimet, A. T. Luong, J. Pharm. Biomed. Anal. 1987, 5 (3), 205–211.
- 18 J. Aaltonen, J. Rantanen, S. Siiria, M. Karjalainene, A. Jorgensen, N. Laitinen, M. Savolainen, P. Seitavuopio, M. Louhi-Kultanen, J. Yliruusi, J. Anal. Chem. 2003, 75, 5267–5273.
- 19 A. D. Patel, P. E. Luner, M. S. Kemper, Int. J. Pharm. 2000, 206, 63–74.
- 20 I. C. Wang, M. J. Lee, D. Y. Seo, H. E. Lee, Y. K. Choi, W. S. Kim, C. S. Kim, M. Y. Jeong, G. J. Choi, Am. Assoc. Pharm. Sci. 2011, 12 (2), 764–770.
- 21 A. Tudor, S. Church, P. Hendra, M. Davies, C. Melia, Pharm. Res. 1993, 10, 1772–1776.
- 22 C. M. Deeley, R. A. Spragg, T. L. Threlfall, Spectrochim. Acta, Part A 1991, 47, 1217–1223.
- 23 C. J. Strachan, T. Rades, K. C. Gordon, J. Rantanen, J. Pharm. Pharmacol. 2007, 59, 179–192.
- 24 F. W. Langkilde, J. Sjoblom, L. Tekenbergs-Hjelte, J. Mrak, J. Pharm. Biomed. Anal. 1997, 15, 687–696.
- 25 S. N. Campbell Roberts, A. C. Williams, I. M. Grimsey, S. W. Booth, J. Pharm. Biomed. Anal. 2002, 28, 1135–1147.
- 26 N. Al-Zoubi, J. E. Koundourellis, S. Malamataris, J. Pharm. Biomed. Anal. 2002, 29, 459–467.
- 27 M. C. Hennigan, A. G. Ryder, J. Pharm. Biomed. Anal. 2013, 72, 163–171.
- 28 N. Rodriguez-Hornedo, S. J. Nehm, K. F. Seefeldt, Y. Pagan-Torres, C. J. Falkiewicz, Mol. Pharm. 2006, 3 (3), 362–367.
- 29 C. Herman, B. Haut, S. Douieb, A. Larcy, V. Vermylen, T. Leyssens, Org. Proc. Res. Dev. 2012, 16 (1), 49–56.
- 30 M. Barrett, H. Hao, A. Maher, K. Hodnett, B. Glennon, D. Croker, Org. Proc. Res. Dev. 2011, 15 (3), 681–687.
- 31 W. Su, H. Hao, M. Barrett, B. Glennon, Org. Proc. Res. Dev. 2010, 14, 1432–1437.
- 32 A. Caillet, F. Puel, G. Fevotte, Int. J. Pharm. 2006, 307 (2), 201–208.
- 33 A. Caillet, F. Puel, G. Fevotte, Chem. Eng. Process. 2008, 47 (3), 377–382.
- 34 J. Cornel, C. Lindenberg, M. Mazzotti, Ind. Eng. Chem. Res. 2008, 47, 4870–4882.
- 35 H. Qu, J. Kohonen, M. Louhi-Kultanen, S. P. Reinikainen, J. Kallas, J. Ind. Eng. Chem. Res. 2008, 47, 6991–6998.
- 36 S. C. Barthe, M. A. Grover, R. W. Rousseau, Cryst. Growth Des. 2008, 8 (9), 3316–3322.
- 37 J. Zhao, M. Wang, B. Dong, Q. Feng, C. Xu, Org. Proc. Res. Dev. 2013, 17, 375–381.
- 38 D. Sathe, K. Sawant, H. Mondkar, T. Naik, M. Deshpande, Org. Proc. Res. Dev. 2010, 14, 1373–1378.
- 39 X. Liu, D. Sun, F. Wang, Y. Wu, Y. Chen, L. Wang, J. Pharm. Sci. 2011, 100 (6), 2452–2459.
- 40 L. L. Simon, Z. N. Nagy, K. Hungerbuehler, Chem. Eng. Sci. 2009, 64, 3344–3351.
- 41 S. S. Kadam, J. A. W. Vissers, M. Forgione, R. M. Geertman, P. J. Daudey, A. I. Stankiewicz, H. J. M. Kramer, Org. Proc. Res. Dev. 2012, 16, 769–780.
- 42 L. Helmdach, M. P. Feth, J. Ulrich, Org. Proc. Res. Dev. 2013, 17, 585–598.
- 43 H. Pataki, I. Markovitz, B. Vajna, Z. K. Nagy, G. Marosi, Cryst. Growth Des. 2012, 12, 5621–5628.
- 44 H. Pataki, I. Csontos, Z. K. Nagy, B. Vajna, M. Molnar, L. Katona, G. Marosi, Org. Process Res. Dev. 2013, 17, 493–499.
- 45 E. Simone, A. N. Saleemi, Z. K. Nagy, Chem. Eng. Res. Des. 2014, 92, 594–611.
- 46 S. Slobodan, D. A. Clark, J. C. Mitchell, M. J. Snowden, Analyst 2004, 129, 1001–1007.
- 47 B. Vajna, G. Patyi, Z. K. Nagy, A. Bodis, A. Farkas, G. Marosi, J. Raman Spectrosc. 2011, 42, 1977–1986.
- 48 C. Gendrin, Y. Roggo, C. Collet, J. Pharm. Biomed. Anal. 2008, 48, 533–553.
- 49 B. Vajna, H. Pataki, Z. K. Nagy, I. Farkas, G. Marosi, Int. J. Pharm. 2011, 419, 107–113.
- 50 B. Vajna, I. Farkasa, A. Farkas, H. Pataki, Z. K. Nagy, J. Madarász, G. Marosi, J. Pharm. Biomed. Anal. 2011, 56, 38–44.
- 51 S. Jiang, J. H. ter Horst, P. J. Jansens, Cryst. Growth Des. 2010, 10, 2123–2128.
- 52 S. W. Wong, C. Georgakis, G. D. Botsaris, K. Saranteas, R. Bakale, Ind. Eng. Chem. Res. 2008, 47, 5576–5584.