Technological Advancement in Product Valorization of Agricultural Wastes Treated with Deep Eutectic Solvents: A Review
Raushan Quraishi
Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114 India
Search for more papers by this authorCorresponding Author
Dibyajyoti Haldar
Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114 India
E-mail: [email protected]
Search for more papers by this authorRaushan Quraishi
Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114 India
Search for more papers by this authorCorresponding Author
Dibyajyoti Haldar
Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114 India
E-mail: [email protected]
Search for more papers by this authorAbstract
The current review article investigates the potential for producing highly valuable items solely from agricultural wastes treated with deep eutectic solvents (DES). A thorough explanation of the DES s’ reaction mechanism and biomass-treating capabilities is provided, shedding light on how green pretreatment methods can be applied to agricultural wastes in order to form high-value products. In view of that, the influences of crucial properties of DES like viscosity, density, and recycling ability of DES are well analyzed. This review article's next goal is to compile the most recent developments for the years 2018–2023 on DES-based valorization of agricultural wastes into a range of products, including biogas such as biohydrogen, liquid biofuels like bioethanol and butanol, and platform chemicals and reagents that are followed by novel materials. A discussion of the current criticalities and prospective avenues for further research concluded the paper. For this reason, having a thorough grasp of product value in one review paper from the potential of DES to agricultural wastes will be very helpful to the readers.
Conflict of Interest
There are no conflicts of interest to declare.
Open Research
Data Availability Statement
Not applicable.
References
- 1D. Haldar, P. Dey, J. Thomas, R. R. Singhania, A. K. Patel, Bioresour. Technol. 2022, 365, 128180. DOI: https://doi.org/10.1016/j.biortech.2022.128180
- 2M. Mujtaba, L. Fernandes Fraceto, M. Fazeli, S. Mukherjee, S. M. Savassa, G. Araujo de Medeiros, A. do Espírito Santo Pereira, S. D. Mancini, J. Lipponen, F. Vilaplana, J. Cleaner Prod. 2023, 402, 136815. DOI: https://doi.org/10.1016/j.jclepro.2023.136815
- 3S. Liu, G. Cheng, Ind. Crops Prod. 2024, 208, 117926. DOI: https://doi.org/10.1016/j.indcrop.2023.117926
- 4K. J. Yong, T. Y. Wu, Bioresour. Technol. 2023, 384, 129238. DOI: https://doi.org/10.1016/j.biortech.2023.129238
- 5D. Haldar, M. K. Purkait, Chemosphere 2021, 264, 128523. DOI: https://doi.org/10.1016/j.chemosphere.2020.128523
- 6Y. Wu, H. Wang, J. Peng, M. Ding, Catal. Today 2023, 408, 92–110. DOI: https://doi.org/10.1016/j.cattod.2022.08.012
- 7B. Geng, X. Jia, X. Peng, Y. Han, Metab. Eng. Commun. 2022, 15, e00211. DOI: https://doi.org/10.1016/j.mec.2022.e00211
- 8H. Guo, Y. Zhao, J.-S. Chang, D.-J. Lee, Bioresour. Technol. 2023, 384, 129294. DOI: https://doi.org/10.1016/j.biortech.2023.129294
- 9W. Zhang, J. Yin, C. Wang, L. Zhao, W. Jian, K. Lu, H. Lin, X. Qiu, H. N. Alshareef, Small Methods 2021, 5, 2100896. DOI: https://doi.org/10.1002/smtd.202100896
- 10S. Shalma, A. M. Shabbirahmed, D. Haldar, A. K. Patel, R. R. Singhania, Environ. Technol. Innovation 2023, 31, 103163. DOI: https://doi.org/10.1016/j.eti.2023.103163
10.1016/j.eti.2023.103163 Google Scholar
- 11H. Chen, C. Sun, Y. Hu, C. Xia, F. Sun, Z. Zhang, J. Environ. Chem. Eng. 2023, 11, 109531. DOI: https://doi.org/10.1016/j.jece.2023.109531
- 12Z. Honarmandrad, K. Kucharska, M. Kaykhaii, J. Gębicki, J. Environ. Chem. Eng. 2024, 12, 112621. DOI: https://doi.org/10.1016/j.jece.2024.112621
- 13Y. Chen, T. Mu, Green Chem. Eng. 2021, 2, 174–186. DOI: https://doi.org/10.1016/j.gce.2021.01.004
10.1016/j.gce.2021.01.004 Google Scholar
- 14K. Świątek, S. Gaag, A. Klier, A. Kruse, J. Sauer, D. Steinbach, Catalysts 2020, 10, 437.
- 15S. Anvari, R. Aguado, F. Jurado, M. Fendri, H. Zaier, A. Larbi, D. Vera, Energy Sustainable Dev 2024, 78, 101367. DOI: https://doi.org/10.1016/j.esd.2023.101367
10.1016/j.esd.2023.101367 Google Scholar
- 16M. Jayakumar, G. T. Gindaba, K. B. Gebeyehu, S. Periyasamy, A. Jabesa, G. Baskar, B. I. John, A. Pugazhendhi, Sci. Total Environ. 2023, 879, 163158. DOI: https://doi.org/10.1016/j.scitotenv.2023.163158
- 17S. Mehariya, F. Fratini, R. Lavecchia, A. Zuorro, J. Environ. Chem. Eng. 2021, 9, 105989. DOI: https://doi.org/10.1016/j.jece.2021.105989
- 18H. Wibowo, H. Susanto, N. Grisdanurak, D. Hantoko, K. Yoshikawa, H. Qun, M. Yan, J. Environ. Chem. Eng. 2021, 9, 105439. DOI: https://doi.org/10.1016/j.jece.2021.105439
- 19K. M. Lee, J. D. Quek, W. Y. Tey, S. Lim, H.-S. Kang, L. K. Quen, W. A. W. Mahmood, S. I. S. Jamaludin, K. H. Teng, K. S. Khoo, Biochem. Eng. J. 2022, 187, 108587. DOI: https://doi.org/10.1016/j.bej.2022.108587
- 20X. Kang, C. Deng, R. Shinde, R. Lin, J. D. Murphy, Energy Convers. Manage. 2023, 288, 117115. DOI: https://doi.org/10.1016/j.enconman.2023.117115
- 21R. Ling, W. Wu, Y. Yuan, W. Wei, Y. Jin, Bioresour. Technol. 2021, 326, 124748. DOI: https://doi.org/10.1016/j.biortech.2021.124748
- 22Y. Huang, Y. Xu, Y. Zhu, R. Huang, Y. Kuang, J. Wang, W. Xiao, J. Lin, Z. Liu, Bioresour. Technol. 2022, 366, 128186. DOI: https://doi.org/10.1016/j.biortech.2022.128186
- 23Y. Xu, Y.-H. Liu, L.-H. Xu, Y.-T. He, J.-L. Wen, T.-Q. Yuan, Bioresour. Technol. 2023, 380, 129090. DOI: https://doi.org/10.1016/j.biortech.2023.129090
- 24S. Li, Y. Wang, Q. Dong, Z. Yuan, T. Mu, Z. Xue, L. Cao, Carbohydr. Polym. 2024, 346, 122628. DOI: https://doi.org/10.1016/j.carbpol.2024.122628
- 25L.-L. Sun, S.-N. Sun, X.-F. Cao, S.-Q. Yao, Carbohydr. Polym. 2024, 343, 122420. DOI: https://doi.org/10.1016/j.carbpol.2024.122420
- 26W. Chen, Z. Xue, J. Wang, J. Jiang, X. Zhao, T. Mu, Acta Phys. Chim. Sin 2018, 34, 904–911.
- 27M. I. Martín, I. García-Díaz, F. A. López, Miner. Eng. 2023, 203, 108306. DOI: https://doi.org/10.1016/j.mineng.2023.108306
- 28Y. Chen, Z. Yu, Green Chem. Eng. 2023, 5, 409–417. DOI: https://doi.org/10.1016/j.gce.2023.11.001
10.1016/j.gce.2023.11.001 Google Scholar
- 29A. Khajeh, M. Shakourian-Fard, K. Parvaneh, J. Mol. Liq. 2021, 321, 114744. DOI: https://doi.org/10.1016/j.molliq.2020.114744
- 30A. Puerta, P. Tejedor-Matellanes, I. Luque-Jurado, C. Gonzalez-Jimenez, A. C. Soria, M. de Frutos, Adv. Sample Prep. 2023, 7, 100086. DOI: https://doi.org/10.1016/j.sampre.2023.100086
10.1016/j.sampre.2023.100086 Google Scholar
- 31D. Shi, F. Zhou, W. Mu, C. Ling, T. Mu, G. Yu, R. Li, Phys. Chem. Chem. Phys. 2022, 24, 26029–26036. DOI: https://doi.org/10.1039/D2CP03423A
- 32D. Patel, K. J. Suthar, H. K. Balsora, D. Patel, S. R. Panda, N. Bhavsar, Asia-Pacific J. Chem. Eng. 2024, 19, e3151. DOI: https://doi.org/10.1002/apj.3151
- 33Z. Chen, X. Bai, A. Lusi, C. Wan, ACS Sustainable Chem. Eng. 2018, 6, 12205–12216. DOI: https://doi.org/10.1021/acssuschemeng.8b02541
- 34A. K. Kumar, B. S. Parikh, M. Pravakar, Environ. Sci. Pollut. Res. 2016, 23, 9265–9275. DOI: https://doi.org/10.1007/s11356-015-4780-4
- 35Z. Guo, Q. Zhang, T. You, X. Zhang, F. Xu, Y. Wu, Green Chem. 2019, 21, 3099–3108. DOI: https://doi.org/10.1039/C9GC00704K
- 36A. Satlewal, R. Agrawal, P. Das, S. Bhagia, Y. Pu, S. K. Puri, S. S. V. Ramakumar, A. J. Ragauskas, ACS Sustainable Chem. Eng. 2019, 7, 1095–1104. DOI: https://doi.org/10.1021/acssuschemeng.8b04773
- 37H. Wang, J. Li, X. Zeng, X. Tang, Y. Sun, T. Lei, L. Lin, Cellulose 2020, 27, 1301–1314. DOI: https://doi.org/10.1007/s10570-019-02867-2
- 38Y. Zhu, B. Qi, X. Liang, J. Luo, Y. Wan, Polymers 2021, 13, 1170.
- 39A.-L. Li, X.-D. Hou, K.-P. Lin, X. Zhang, M.-H. Fu, J. Biosci. Bioeng. 2018, 126, 346–354. DOI: https://doi.org/10.1016/j.jbiosc.2018.03.011
- 40Y. Zhang, Z. Zhang, K. Guo, X. Liang, Bioresour. Technol. 2022, 365, 128175. DOI: https://doi.org/10.1016/j.biortech.2022.128175
- 41A. Satlewal, R. Agrawal, P. Das, S. Bhagia, Y. Pu, S. K. Puri, S. S. V. Ramakumar, A. J. Ragauskas, CS Sustainable Chem. Eng. 2019, 7, 1095–1104. DOI: https://doi.org/10.1021/acssuschemeng.8b04773
- 42A. R. Mankar, A. Pandey, K. K. Pant, Bioresour. Technol. 2022, 345, 126528. DOI: https://doi.org/10.1016/j.biortech.2021.126528
- 43C.-Y. Ma, L.-H. Xu, Q. Sun, S.-N. Sun, X.-F. Cao, J.-L. Wen, T.-Q. Yuan, Bioresour. Technol. 2022, 352, 127065. DOI: https://doi.org/10.1016/j.biortech.2022.127065
- 44C. Alvarez-Vasco, R. Ma, M. Quintero, M. Guo, S. Geleynse, K. K. Ramasamy, M. Wolcott, X. Zhang, Green Chem. 2016, 18, 5133–5141. DOI: https://doi.org/10.1039/C6GC01007E
- 45V. R. Chourasia, M. Bisht, K. K. Pant, R. J. Henry, Bioresour. Technol. 2022, 351, 127005. DOI: https://doi.org/10.1016/j.biortech.2022.127005
- 46Z.-Y. Tang, L. Li, W. Tang, J.-W. Shen, Q.-Z. Yang, C. Ma, Y.-C. He, Bioresour. Technol. 2023, 381, 129106. DOI: https://doi.org/10.1016/j.biortech.2023.129106
- 47Y. T. Tan, A. S. M. Chua, G. C. Ngoh, Ind. Crops Prod. 2020, 154, 112729. DOI: https://doi.org/10.1016/j.indcrop.2020.112729
- 48H. Han, L. Chen, J. Zhao, H. Yu, Y. Wang, H. Yan, Y. Wang, Z. Xue, T. Mu, Acta Phys.-Chim. Sin 2023, 39, 2212043.
- 49R. Kumar, O. Prakash, Fuel 2023, 351, 128958. DOI: https://doi.org/10.1016/j.fuel.2023.128958
- 50K. Dhandayuthapani, V. Sarumathi, P. Selvakumar, T. Temesgen, P. Asaithambi, P. Sivashanmugam, Chem. Data Collect. 2021, 31, 100641. DOI: https://doi.org/10.1016/j.cdc.2020.100641
- 51M. S. Poomani, I. Mariappan, K. Muthan, V. Subramanian, Biocatal. Agric. Biotechnol. 2023, 50, 102741. DOI: https://doi.org/10.1016/j.bcab.2023.102741
- 52C.-Y. Ma, L.-H. Xu, C. Zhang, K.-N. Guo, T.-Q. Yuan, J.-L. Wen, Bioresour. Technol. 2021, 341, 125828. DOI: https://doi.org/10.1016/j.biortech.2021.125828
- 53P. Boonchuay, C. Techapun, N. Leksawasdi, P. Seesuriyachan, P. Hanmoungjai, M. Watanabe, S. Srisupa, T. Chaiyaso, J. Fungi. 2021, 7, 547.
- 54S. K. Panda, S. K. Maiti, Bioresour. Technol. 2024, 391, 129975. DOI: https://doi.org/10.1016/j.biortech.2023.129975
- 55Y. Liu, X. Zheng, S. Tao, L. Hu, X. Zhang, X. Lin, Renewable Energy 2021, 177, 259–267. DOI: https://doi.org/10.1016/j.renene.2021.05.131
- 56P. Zhao, F. Pu, C. Su, Y. Wan, T. Huang, X. Hou, D. Cai, Bioresour. Technol. 2024, 399, 130635. DOI: https://doi.org/10.1016/j.biortech.2024.130635
- 57M. Wu, L. Gong, C. Ma, Y.-C. He, Bioresour. Technol. 2021, 340, 125695. DOI: https://doi.org/10.1016/j.biortech.2021.125695
- 58O. A. Fakayode, N. D. K. Akpabli-Tsigbe, H. Wahia, S. Tu, M. Ren, C. Zhou, H. Ma, Renewable Energy 2021, 180, 258–270. DOI: https://doi.org/10.1016/j.renene.2021.08.057
- 59A. Procentese, F. Raganati, G. Olivieri, M. E. Russo, L. Rehmann, A. Marzocchella, Bioresour. Technol. 2017, 243, 464–473. DOI: https://doi.org/10.1016/j.biortech.2017.06.143
- 60G.-C. Xu, J.-C. Ding, R.-Z. Han, J.-J. Dong, Y. Ni, Bioresour. Technol. 2016, 203, 364–369. DOI: https://doi.org/10.1016/j.biortech.2015.11.002
- 61X. Lin, Y. Liu, X. Zheng, N. Qureshi, Ind. Crops Prod. 2021, 162, 113258. DOI: https://doi.org/10.1016/j.indcrop.2021.113258
- 62M. Hijosa-Valsero, J. Garita-Cambronero, A. I. Paniagua-García, R. Díez-Antolínez, Renewable Energy 2020, 148, 223–233. DOI: https://doi.org/10.1016/j.renene.2019.12.026
- 63J. Liu, C. Wang, X. Zhao, F. Yin, H. Yang, K. Wu, C. Liang, B. Yang, W. Zhang, Electron. J. Biotechnol. 2023, 62, 27–35. DOI: https://doi.org/10.1016/j.ejbt.2022.12.004
- 64X. Fu, J. Qiao, Z. Xu, C. Xu, X. Li, Ind. Crops Prod. 2024, 210, 118040. DOI: https://doi.org/10.1016/j.indcrop.2024.118040
- 65L. W. Yoon, I. S. Rafi, G. C. Ngoh, Chem. Eng. Res. Des. 2022, 179, 257–264. DOI: https://doi.org/10.1016/j.cherd.2022.01.031
- 66X. Xian, L. Fang, Y. Zhou, B. Li, X. Zheng, Y. Liu, X. Lin, Fermentation 2022, 8, 371.
- 67A. K. Kumar, B. S. Parikh, E. Shah, L. Z. Liu, M. A. Cotta, Biocatal. Agric. Biotechnol. 2016, 7, 14–23. DOI: https://doi.org/10.1016/j.bcab.2016.04.008
- 68D. Sawhney, S. Vaid, R. Bangotra, S. Sharma, H. C. Dutt, N. Kapoor, R. Mahajan, B. K. Bajaj, Bioresour. Technol. 2023, 375, 128791. DOI: https://doi.org/10.1016/j.biortech.2023.128791
- 69S. I. Okuofu, A. S. Gerrano, S. Singh, S. Pillai, Biomass Convers. Biorefin. 2022, 12, 3525–3533. DOI: https://doi.org/10.1007/s13399-020-01053-w
- 70H. Poy, A. M. da Costa Lopes, E. Lladosa, C. Gabaldón, S. Loras, A. J. D. Silvestre, Renewable Energy 2023, 219, 119488. DOI: https://doi.org/10.1016/j.renene.2023.119488
- 71R. Muniasamy, A. E. Swathesriee, S. Rathnasamy, Biomass Conv. Bioref. 2024, 14, 21809. DOI: https://doi.org/10.1007/s13399-023-04499-w
10.1007/s13399-023-04499-w Google Scholar
- 72G. Xu, H. Li, W. Xing, L. Gong, J. Dong, Y. Ni, Biotechnol. Biofuels 2020, 13, 166. DOI: https://doi.org/10.1186/s13068-020-01806-9
- 73F. Lima, L. C. Branco, N. Lapa, I. M. Marrucho, Waste Manage. 2021, 131, 368–375. DOI: https://doi.org/10.1016/j.wasman.2021.06.027
- 74Q. Yu, L. Qin, Y. Liu, Y. Sun, H. Xu, Z. Wang, Z. Yuan, Bioresour. Technol. 2019, 271, 210–217. DOI: https://doi.org/10.1016/j.biortech.2018.09.056
- 75V. G. Nguyen, T. X. Nguyen-Thi, P. Q. Phong Nguyen, V. D. Tran, Ü. Ağbulut, L. H. Nguyen, D. Balasubramanian, W. Tarelko, S. A. Bandh, N. D. Khoa Pham, Int. J. Hydrogen Energy 2024, 54, 127–160. DOI: https://doi.org/10.1016/j.ijhydene.2023.05.049
- 76V. Sridevi, D. V. Surya, B. R. Reddy, M. Shah, R. Gautam, T. H. Kumar, H. Puppala, K. S. Pritam, T. Basak, Int. J. Hydrogen Energy 2024, 52, 507–531. DOI: https://doi.org/10.1016/j.ijhydene.2023.06.186
- 77S. Valizadeh, H. Hakimian, A. Farooq, B.-H. Jeon, W.-H. Chen, S. Hoon Lee, S.-C. Jung, M. Won Seo, Y.-K. Park, Bioresour. Technol. 2022, 365, 128143. DOI: https://doi.org/10.1016/j.biortech.2022.128143
- 78X. Chen, J. Jiang, J. Zhu, W. Song, C. Liu, L.-P. Xiao, Bioresour. Technol. 2022, 362, 127788. DOI: https://doi.org/10.1016/j.biortech.2022.127788
- 79Y. Jing, F. Li, Y. Li, D. Jiang, C. Lu, Z. Zhang, Q. Zhang, Bioresour. Technol. 2022, 349, 126867. DOI: https://doi.org/10.1016/j.biortech.2022.126867
- 80W. Song, J. Jiang, H. Jiang, C. Liu, Y. Dong, X. Chen, L.-P. Xiao, Fuel 2023, 348, 128521. DOI: https://doi.org/10.1016/j.fuel.2023.128521
- 81Y. Han, L. Ye, X. Gu, P. Zhu, X. Lu, Ind. Crops Prod. 2019, 127, 88–93. DOI: https://doi.org/10.1016/j.indcrop.2018.10.058
- 82A. Arslanoğlu, M. Sert, Fuel 2019, 258, 116142. DOI: https://doi.org/10.1016/j.fuel.2019.116142
- 83K. T. T. Amesho, P.-C. Cheng, K.-L. Chang, Y.-P. Peng, S.-R. Jhang, Y.-C. Lin, Bioresour. Technol. 2022, 363, 127969. DOI: https://doi.org/10.1016/j.biortech.2022.127969
- 84Q. Ji, C. P. Tan, A. E. A. Yagoub, L. Chen, D. Yan, C. Zhou, Energy Technol. 2021, 9, 2100396. DOI: https://doi.org/10.1002/ente.202100396
- 85S. Arora, N. Gupta, V. Singh, ChemSusChem 2021, 14, 3953–3958. DOI: https://doi.org/10.1002/cssc.202101130
- 86V. Jančíková, M. Jablonský, J. Mol. Liq. 2024, 394, 123645. DOI: https://doi.org/10.1016/j.molliq.2023.123645
- 87C. Yang, Y. Zhu, Z. Tian, C. Zhang, X. Han, S. Jiang, K. Liu, G. Duan, Int. J. Biol. Macromol. 2024, 254, 127997. DOI: https://doi.org/10.1016/j.ijbiomac.2023.127997
- 88R. O. Almeida, T. C. Maloney, J. A. F. Gamelas, Ind. Crops Prod. 2023, 199, 116583. DOI: https://doi.org/10.1016/j.indcrop.2023.116583
- 89H. Zhang, Y. Shi, M. Li, J. Chen, Y. Xin, L. Zhang, Z. Gu, J. Liu, R. Liu, Chem. Eng. Sci. 2022, 256, 117694. DOI: https://doi.org/10.1016/j.ces.2022.117694
- 90Y. Mukheja, J. Kaur, K. Pathania, S. P. Sah, D. B. Salunke, A. T. Sangamwar, S. V. Pawar, Int. J. Biol. Macromol. 2023, 241, 124601. DOI: https://doi.org/10.1016/j.ijbiomac.2023.124601
- 91W.-L. Lim, A. A. N. Gunny, F. H. Kasim, S. C. B. Gopinath, N. H. I. Kamaludin, D. Arbain, Cellulose 2021, 28, 6183–6199. DOI: https://doi.org/10.1007/s10570-021-03914-7
- 92A. Lu, X. Yu, Q. Ji, L. Chen, A. E.-G. Yagoub, F. Olugbenga, C. Zhou, Ind. Crops Prod. 2023, 195, 116415. DOI: https://doi.org/10.1016/j.indcrop.2023.116415
- 93J. Jiang, Y. Zhu, S. Zargar, J. Wu, H. Oguzlu, A. Baldelli, Z. Yu, J. Saddler, R. Sun, Q. Tu, et al., Ind. Crops Prod. 2021, 173, 114148. DOI: https://doi.org/10.1016/j.indcrop.2021.114148
- 94W. Yu, C. Wang, Y. Yi, H. Wang, L. Zeng, M. Li, Y. Yang, Z. Tan, ACS Omega 2020, 5, 5580–5588. DOI: https://doi.org/10.1021/acsomega.0c00506
- 95S. Liu, Q. Zhang, S. Gou, L. Zhang, Z. Wang, Carbohydr. Polym. 2021, 251, 117018. DOI: https://doi.org/10.1016/j.carbpol.2020.117018
- 96S. Hong, Y. Song, Y. Yuan, H. Lian, H. Liimatainen, Ind. Crops Prod. 2020, 143, 111913. DOI: https://doi.org/10.1016/j.indcrop.2019.111913
- 97C. Liu, M.-C. Li, W. Chen, R. Huang, S. Hong, Q. Wu, C. Mei, Carbohydr. Polym. 2020, 246, 116548. DOI: https://doi.org/10.1016/j.carbpol.2020.116548
- 98C.-Y. Ma, X.-P. Peng, S. Sun, J.-L. Wen, T.-Q. Yuan, Int. J. Biol. Macromol. 2021, 192, 417–425. DOI: https://doi.org/10.1016/j.ijbiomac.2021.09.140
- 99J. Xie, J. Xu, Z. Cheng, S. Zhu, B. Wang, Ind. Crops Prod. 2021, 172, 114058. DOI: https://doi.org/10.1016/j.indcrop.2021.114058
- 100H. Zhang, Y. Shi, M. Li, J. Chen, Y. Xin, L. Zhang, Z. Gu, J. Liu, R. Liu, Chem. Eng. Sci. 2022, 256, 117694. DOI: https://doi.org/10.1016/j.ces.2022.117694
- 101T. Luo, C. Wang, X. Ji, G. Yang, J. Chen, C. G. Yoo, S. Janaswamy, G. Lyu, Int. J. Biol. Macromol. 2021, 183, 781–789. DOI: https://doi.org/10.1016/j.ijbiomac.2021.05.005
- 102D. Tian, F. Shen, J. Hu, M. Huang, L. Zhao, J. He, Q. Li, S. Zhang, F. Shen, Chem. Eng. J. 2022, 428, 131373. DOI: https://doi.org/10.1016/j.cej.2021.131373
- 103C. Du, B. Zhao, X.-B. Chen, N. Birbilis, H. Yang, Sci. Rep. 2016, 6, 29225. DOI: https://doi.org/10.1038/srep29225
- 104H. Wang, X. Ma, Q. Cheng, X. Xi, L. Zhang, J. Chem. 2018, 2018, 9579872. DOI: https://doi.org/10.1155/2018/9579872
10.1155/2018/9579872 Google Scholar