Evaluating gender effect in the generic bioequivalence studies by physiologically based pharmacokinetic modeling – A case study of dextromethorphan modified release tablets
Manoj Gundeti
Global Clinical Management, IPDO, Dr Reddy’s Laboratories Ltd, Hyderabad, India
Search for more papers by this authorAditya Murthy
Biopharmaceutics Group, Global Clinical Management, IPDO, Dr Reddy’s Laboratories Ltd, Hyderabad, India
Search for more papers by this authorShubham Jamdade
Global Clinical Management, IPDO, Dr Reddy’s Laboratories Ltd, Hyderabad, India
Search for more papers by this authorCorresponding Author
Tausif Ahmed
Department of Biopharmaceutics and Bioequivalence, Global Clinical Management, IPDO, Dr Reddy’s Laboratories Ltd, Hyderabad, India
Correspondence
Tausif Ahmed.
Email: [email protected]
Search for more papers by this authorManoj Gundeti
Global Clinical Management, IPDO, Dr Reddy’s Laboratories Ltd, Hyderabad, India
Search for more papers by this authorAditya Murthy
Biopharmaceutics Group, Global Clinical Management, IPDO, Dr Reddy’s Laboratories Ltd, Hyderabad, India
Search for more papers by this authorShubham Jamdade
Global Clinical Management, IPDO, Dr Reddy’s Laboratories Ltd, Hyderabad, India
Search for more papers by this authorCorresponding Author
Tausif Ahmed
Department of Biopharmaceutics and Bioequivalence, Global Clinical Management, IPDO, Dr Reddy’s Laboratories Ltd, Hyderabad, India
Correspondence
Tausif Ahmed.
Email: [email protected]
Search for more papers by this authorAbstract
The United States Food and Drug Administration guidelines for the bioequivalence (BE) testing of the generic drug products suggests that there should be an equal proportion of male and female population in the BE study. Despite this requirement, many generic drug companies do not maintain the suggested proportion of female population in their studies. Several socio-economic and cultural factors lead to lower participation of the females in the BE studies. More recently, the regulatory agencies across the globe are requesting the generic drug companies to demonstrate the performance of their drug products in the under-represented sex via additional studies. In this work, we describe the case of Dextromethorphan modified release tablets where the gender effect on the product performance was evaluated by physiologically based pharmacokinetic (PBPK) modeling approach. We have compared the drug product's performance by population simulations considering four different scenarios. The data from all-male population (from in house Pharmacokinetic [PK] BE studies) was considered as a reference and other scenarios were compared against the all-male population data. In the first scenario, we made a comparison between all-male (100% male) vs all-female (100% female) population. Second scenario was as per agency’s requirements—equal proportion of male and female in the BE study. As an extreme scenario, 100% male vs 30:70 male:female was considered (higher females than males in the BE studies). Finally, as a more realistic scenario, 100% male versus 70:30 male:female was considered (lower females than males in the BE studies). Population PK followed by virtual BE was employed to demonstrate the similarity/differences in the drug product performance between the sexes. This approach can be potentially utilized to seek BE study waivers thus saving cost and accelerating the entry of the generic products to the market.
CONFLICT OF INTEREST STATEMENT
Conflict of Interest All the authors are employees of Dr Reddy’s Laboratories Ltd and report no conflicts of interest. The authors alone are responsible for the content and writing of this article.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
bdd2389-sup-0001-suppl-data.docx22.2 KB | Supporting Information S1 |
bdd2389-sup-0002-fig_s1.TIF232.3 KB | Figure S1 |
bdd2389-sup-0003-fig_s2.TIF292.6 KB | Figure S2 |
bdd2389-sup-0004-fig_s3.TIF311.1 KB | Figure S3 |
bdd2389-sup-0005-fig_s4.TIF63.3 KB | Figure S4 |
bdd2389-sup-0006-fig_s5.TIF143.3 KB | Figure S5 |
bdd2389-sup-0007-fig_s6.TIF126.6 KB | Figure S6 |
bdd2389-sup-0008-fig_s7.TIF129.4 KB | Figure S7 |
bdd2389-sup-0009-fig_s8.TIF228.2 KB | Figure S8 |
bdd2389-sup-0010-fig_s9.TIF307.4 KB | Figure S9 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Ahmad, A., Alqahtani, S., Jan, B. L., Raish, M., Rabba, A. K., & Alkharfy, K. M. (2020). Gender effect on the pharmacokinetics of thymoquinone: Preclinical investigation and in silico modeling in male and female rats. Saudi Pharmaceutical Journal, 28(4), 403–408. https://doi.org/10.1016/j.jsps.2020.01.022
- Aishwarya, R., Murthy, A., Ahmed, T., & Chachad, S. (2022). A Novel approach to justify dissolution differences in an extended release drug product using physiologically based biopharmaceutics modeling and simulation. Journal of Pharmaceutical Sciences, 111(6), 1820–1832. https://doi.org/10.1016/j.xphs.2022.02.007
- ASEAN. (2015). Guideline for the conduct of bioequivalence studies. Retrieved from https://asean.org/wp-content/uploads/2021/01/ASEAN-Guideline-for-the-Conduct-of-Bioavailability-and-Bioequivalence-Studies.pdf. Accessed 1st June 2023.
- Blake, M. J., Abdel-Rahman, S. M., Pearce, R. E., Leeder, J. S., & Kearns, G. L. (2006). Effect of diet on the development of drug metabolism by cytochrome P-450 enzymes in healthy infants. Pediatric Research, 60(6), 717–723. https://doi.org/10.1203/01.pdr.0000245909.74166.00
- Bolger, M. B., Macwan, J. S., Sarfraz, M., Almukainzi, M., & Löbenberg, R. (2019). The irrelevance of in vitro dissolution in setting product specifications for drugs like dextromethorphan that are subject to lysosomal trapping. Journal of Pharmaceutical Sciences, 108(1), 268–278. https://doi.org/10.1016/j.xphs.2018.09.036
- Bradford, L. D. (2002). CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics, 3(2), 229–243. https://doi.org/10.1517/14622416.3.2.229
- Capon, D. A., Bochner, F., Kerry, N., Mikus, G., Danz, C., & Somogyi, A. A. (1996). The influence of CYP2D6 polymorphism and quinidine on the disposition and antitussive effect of dextromethorphan in humans. Clinical Pharmacology and Therapeutics (St. Louis), 60(3), 295–307. https://doi.org/10.1016/s0009-9236(96)90056-9
- Carrasco-Portugal, M. D., & Flores-Murrieta, F. J. (2011). Gender differences in the pharmacokinetics of oral drugs. Pharmacology and Pharmacy, 2(01), 31–41. https://doi.org/10.4236/pp.2011.21004
- CDSCO, India. Guideline for bioavailability and bioequivalence studies. Retrieved from https://cdsco.gov.in/opencms/opencms/en/bioequi_bioavail/. Accessed 1st June 2023.
- Chen, M. L., Lee, S. C., Ng, M. J., Schuirmann, D. J., Lesko, L. J., & Williams, R. L. (2000). Pharmacokinetic analysis of bioequivalence trials: Implications for sex-related issues in clinical pharmacology and biopharmaceutics. Clinical Pharmacology and Therapeutics (St. Louis), 68(5), 510–521. https://doi.org/10.1067/mcp.2000.111184
- Chen, M. L., & Williams, R. L. (1995). Women in bioavailability/bioequivalence trials—A regulatory perspective. Drug Information Journal, 29(3), 813–820. https://doi.org/10.1177/009286159502900304
10.1177/009286159502900304 Google Scholar
- Desmeules, J. A., Oestreicher, M. K., Piguet, V., Allaz, A. F., & Dayer, P. (1999). Contribution of cytochrome P-4502D6 phenotype to the neuromodulatory effects of dextromethorphan. Journal of Pharmacology and Experimental Therapeutics, 288(2), 607–612.
- Duedahl, T. H., Dirks, J., Petersen, K. B., Romsing, J., Larsen, N. E., & Dahl, J. B. (2005). Intravenous dextromethorphan to human volunteers: Relationship between pharmacokinetics and anti-hyperalgesic effect. Pain, 113(3), 360–368. https://doi.org/10.1016/j.pain.2004.11.015
- EMA, Europe. (2010). Guideline on the investigation of bioequivalence. Retrieved from https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf. Accessed 1st June 2023.
- FDA. (2008). US draft guidance on sildenafil citrate tablets. Retrieved from https://www.accessdata.fda.gov/drugsatfda_docs/psg/Sildenafil_Citrate_tab_20895_21845_RC12-08.pdf
- FDA. US draft guidance on norethindrone tablets. Retrieved from https://www.accessdata.fda.gov/drugsatfda_docs/psg/Norethindrone_tab_16954_RC4-09.pdfApr2009
- FDA, US. (2021). Bioequivalence studies with pharmacokinetic endpoints for drugs submitted under an ANDA guidance for industry. Retrieved from https://www.fda.gov/media/87219/download. Accessed 1st June 2023.
- FDA, US. Draft guidance on dextromethorphan hydrobromide; guaifenesin. Retrieved from https://www.accessdata.fda.gov/drugsatfda_docs/psg/Dextromethorphan_Hydrobromide;_Guaifenesin_ERtab_21620_RC12-08.pdfDec2008
- Feldman, M., & Barnett, C. (1991). Fasting gastric pH and its relationship to true hypochlorhydria in humans. Digestive Diseases and Sciences, 36(7), 866–869. https://doi.org/10.1007/bf01297133
- Hartmanshenn, C., Scherholz, M., & Androulakis, I. P. (2016). Physiologically-based pharmacokinetic models: Approaches for enabling personalized medicine. Journal of Pharmacokinetics and Pharmacodynamics, 43(5), 481–504. https://doi.org/10.1007/s10928-016-9492-y
- Health Canada. (2018). Conduct and analysis of comparative bioavailability studies. Retrieved from https://www.canada.ca/content/dam/hc-sc/documents/services/drugs-health-products/drug-products/applications-submissions/guidance-documents/bioavailability-bioequivalence/conduct-analysis-comparative.pdf. Accessed 1st June 2023.
- Hutson, W. R., Roehrkasse, R. L., & Wald, A. (1989). Influence of gender and menopause on gastric emptying and motility. Gastroenterology, 96(1), 11–17. https://doi.org/10.1016/0016-5085(89)90758-0
- Ibarra, M., Vázquez, M., & Fagiolino, P. (2017). Sex effect on average bioequivalence. Clinical Therapeutics, 39(1), 23–33. https://doi.org/10.1016/j.clinthera.2016.11.024
- Jacqz-Aigrain, E., Funck-Brentano, C., & Cresteil, T. (1993). CYP2D6-and CYP3A-dependent metabolism of dextromethorphan in humans. Pharmacogenetics and Genomics, 3(4), 197–204. https://doi.org/10.1097/00008571-199308000-00004
- Karnati, P., Murthy, A., Gundeti, M., & Ahmed, T. (2023). Modelling based approaches to support generic drug regulatory submissions-practical considerations and case studies. The AAPS Journal, 25(4), 63. https://doi.org/10.1208/s12248-023-00831-4
- Kazmi, F., Hensley, T., Pope, C., Funk, R. S., Loewen, G. J., Buckley, D. B., & Parkinson, A. (2013). Lysosomal sequestration (trapping) of lipophilic amine (cationic amphiphilic) drugs in immortalized human hepatocytes (Fa2N-4 cells). Drug Metabolism and Disposition, 41(4), 897–905. https://doi.org/10.1124/dmd.112.050054
- Kerry, N. L., Somogyi, A. A., Bochner, F., & Mikus, G. (1994). The role of CYP2D6 in primary and secondary oxidative metabolism of dextromethorphan: In vitro studies using human liver microsomes. British Journal of Clinical Pharmacology, 38(3), 243–248. https://doi.org/10.1111/j.1365-2125.1994.tb04348.x
- Kim, W. Y., & Benet, L. Z. (2004). P-glycoprotein (P-gp/MDR1)-mediated efflux of sex-steroid hormones and modulation of P-gp expression in vitro. Pharmaceutical Research, 21(7), 1284–1293. https://doi.org/10.1023/b:pham.0000033017.52484.81
- Koren, G., Nordeng, H., & MacLeod, S. (2013). Gender differences in drug bioequivalence: Time to rethink practices. Clinical Pharmacology and Therapeutics (St. Louis), 93(3), 260–262. https://doi.org/10.1038/clpt.2012.233
- Krecic–Shepard, M. E., Barnas, C. R., Slimko, J., Jones, M. P., & Schwartz, J. B. (2000). Gender-specific effects on verapamil pharmacokinetics and pharmacodynamics in humans. The Journal of Clinical Pharmacology, 40(3), 219–230. https://doi.org/10.1177/00912700022008883
- Larsen, U. L., Olesen, H. L., Nyvold, G. C., Eriksen, J., Jakobsen, P., Østergaard, M., Autrup, H., & Andersen, V. (2007). Human intestinal P-glycoprotein activity estimated by the model substrate digoxin. Scandinavian Journal of Clinical and Laboratory Investigation, 67(2), 123–134. https://doi.org/10.1080/00365510600986084
- Lindahl, A., Ungell, A. L., Knutson, L., & Lennernäs, H. (1997). Characterization of fluids from the stomach and proximal jejunum in men and women. Pharmaceutical Research, 14(4), 497–502. https://doi.org/10.1023/a:1012107801889
- Lindell, M., Karlsson, M. O., Lennernäs, H., Påhlman, L., & Lang, M. A. (2003). Variable expression of CYP and Pgp genes in the human small intestine. European Journal of Clinical Investigation, 33(6), 493–499. https://doi.org/10.1046/j.1365-2362.2003.01154.x
- Lopes, G. S., Bielinski, S. J., Moyer, A. M., Black, I. I. I. J. L., Jacobson, D. J., Jiang, R., Larson, N. B., & St Sauver, J. L. (2020). Sex differences in associations between CYP2D6 phenotypes and response to opioid analgesics. Pharmacogenomics and Personalized Medicine, 13, 71–79. https://doi.org/10.2147/pgpm.s239222
- Nagai, N., Kawakubo, T., Kaneko, F., Ishii, M., Shinohara, R., Saito, Y., Shimamura, H., Ohnishi, A., & Ogata, H. (1996). Pharmacokinetics and polymorphic oxidation of dextromethorphan in a Japanese population. Biopharmaceutics & Drug Disposition, 17(5), 421–433. https://doi.org/10.1002/(sici)1099-081x(199607)17:5<421::aid-bdd421>3.3.co;2-0
10.1002/(SICI)1099-081X(199607)17:5<421::AID-BDD421>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- Nicholson, K. L., Hayes, B. A., & Balster, R. L. (1999). Evaluation of the reinforcing properties and phencyclidine-like discriminative stimulus effects of dextromethorphan and dextrorphan in rats and rhesus monkeys. Psychopharmacology, 146(1), 49–59. https://doi.org/10.1007/s002130051087
- Ochs, H. R., Greenblatt, D. J., Divoll, M., Abernethy, D. R., Feyerabend, H., & Dengler, H. J. (1981). Diazepam kinetics in relation to age and sex. Pharmacology, 23(1), 24–30. https://doi.org/10.1159/000137524
- Paine, M. F., Ludington, S. S., Chen, M. L., Stewart, P. W., Huang, S. M., & Watkins, P. B. (2005). Do men and women differ in proximal small intestinal CYP3A or P-glycoprotein expression? Drug Metabolism and Disposition, 33(3), 426–433. https://doi.org/10.1124/dmd.104.002469
- Rüdesheim, S., Selzer, D., Fuhr, U., Schwab, M., & Lehr, T. (2022). Physiologically-based pharmacokinetic modeling of dextromethorphan to investigate interindividual variability within CYP2D6 activity score groups. CPT: Pharmacometrics and Systems Pharmacology, 11(4), 494–511. https://doi.org/10.1002/psp4.12776
- Sadik, R., Abrahamsson, H., & Stotzer, P. O. (2003). Gender differences in gut transit shown with a newly developed radiological procedure. Scandinavian Journal of Gastroenterology, 38(1), 36–42. https://doi.org/10.1080/00365520310000410
- Samper Ribas J. Sex bias in clinical Research: Representation of women in randomized clinical trials of major impact publications. 2019.
- Schuetz, E. G., Furuya, K. N., & Schuetz, J. D. (1995). Interindividual variation in expression of P-glycoprotein in normal human liver and secondary hepatic neoplasms. Journal of Pharmacology and Experimental Therapeutics, 275(2), 1011–1018.
- Silva, A. R., & Dinis-Oliveira, R. J. (2020). Pharmacokinetics and pharmacodynamics of dextromethorphan: Clinical and forensic aspects. Drug Metabolism Reviews, 52(2), 258–282. https://doi.org/10.1080/03602532.2020.1758712
- Silvasti, M., Karttunen, P., Tukiainen, H., Kokkonen, P., Hänninen, U., & Nykänen, S. (1987). Pharmacokinetics of dextromethorphan and dextrorphan: A single dose comparison of three preparations in human volunteers. International Journal of Clinical Pharmacology, Therapy, & Toxicology, 25(9), 493–497.
- Soldin, O. P., Chung, S. H., & Mattison, D. R. (2011). Sex differences in drug disposition. Journal of Biomedicine and Biotechnology, 2011, 1–14. https://doi.org/10.1155/2011/187103
- Strauch, K., Lutz, U., Bittner, N., & Lutz, W. K. (2009). Dose–response relationship for the pharmacokinetic interaction of grapefruit juice with dextromethorphan investigated by human urinary metabolite profiles. Food and Chemical Toxicology, 47(8), 1928–1935. https://doi.org/10.1016/j.fct.2009.05.004
- Tausif ahmed application of PBBM modeling in generic product development: Regulatory applications and case studies[PowerPoint presentation]. Available from: https://www.simulations-plus.com/wp-content/uploads/Dr.-Tausif-Ahmed-MIDD-2023-PBBM-in-generics-12-Feb-23.pdf
- Tuo, B., Wen, G., Wei, J., Zhang, Y., & Dong, H. (2008). 930 gender differences in duodenal bicarbonate secretion cause gender differences in human duodenal ulcer. Gastroenterology, 4(134), A–137. https://doi.org/10.1016/s0016-5085(08)60636-8
10.1016/s0016?5085(08)60636?8 Google Scholar
- Von Moltke, L. L., Greenblatt, D. J., Grassi, J. M., Granda, B. W., Venkatakrishnan, K., Schmider, J., Harmatz, J. S., & Shader, R. I. (1998). Multiple human cytochromes contribute to biotransformation of dextromethorphan in-vitro: Role of CYP2C9, CYP2C19, CYP2D6, and CYP3A. Journal of Pharmacy and Pharmacology, 50(9), 997–1004. https://doi.org/10.1111/j.2042-7158.1998.tb06914.x
- Wiegratz, I., Kutschera, E., Lee, J. H., Moore, C., Mellinger, U., Winkler, U. H., & Kuhl, H. (2003). Effect of four oral contraceptives on thyroid hormones, adrenal and blood pressure parameters. Contraception, 67(5), 361–366. https://doi.org/10.1016/s0010-7824(03)00006-4